Problem 1 Warmup.

a. Prove that if a language L contains finitely many elements then it is regular.

b. If a language L contains infinitely many elements, can it still be regular?

c. Give the state diagram for a DFA accepting the language consisting of all strings over $\Sigma = \{a, b, c, d\}$ that are sorted, i.e., where any as occur before any bs before any cs before any ds. For example, abbd is sorted, whereas da is not. Note that we consider the empty string to be sorted.

Problem 2 Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Let $w = w_1w_2\cdots w_n$ be a string accepted by M, for which let r_0, r_1, \ldots, r_n be the corresponding accepting path. (See the section titled “Formal Definition of Computation,” page 40, in Sipser.) Suppose that $r_i = r_j$ for some i and j such that $i < j$. Prove that, in addition to accepting w, M also accepts some string w' that is shorter than w, i.e., such that $|w'| < |w|$.

Problem 3 We defined DFAs to have a set F of accepting states. In this problem we consider a variant of DFAs that have exactly one accepting state, q_{accept}. We call this variant of DFAs one-DFAs.

a. Give a formal definition of one-DFAs, including the parts of a one-DFA, what it means for a one-DFA to accept a string w, and the language of a one-DFA.

b. Show that for any one-DFA M_1 there exists an equivalent DFA M (i.e., such that $L(M_1) = L(M)$).

c. Show that the converse is not true: there exist regular languages not recognized by any one-DFA.

d. Consider an analogous definition of one-NFAs, NFAs with exactly one accepting state. How do one-NFAs compare to NFAs?