Reinforcement learning

* What if \(P(s'|s,a) \) and \(R(s) \) are not known?
 Can we learn \(T^* \) or \(V^*(s) \) from experience?

1) Model-based (indirect) approach

Explore world, estimate model \(\hat{P}(s'|s,a) \approx P(s'|s,a) \), compute \(\hat{T}^* \) from \(\hat{F}(s'|s,a) \)

* Cons: to store \(P(s'|s,a) \) is \(O(n^2) \) for \(n \) states
 Only care about \(T^*(s) \) or \(V^*(s) \) which are \(O(n) \)
 Is it really necessary to estimate a model?

* Pro: model \(P(s'|s,a) \) useful for task transfer, where rewards \(R(s) \) or discount factor \(\gamma \) changes, but \(P(s'|s,a) \) stays the same

2) Direct approach: learn \(T^*(s) \), \(V^*(s) \) w/o building model. How?

Stochastic approximation theory

* How to estimate mean of random variable \(X \) from samples \(X_0, X_1, \ldots, X_t \)?

1) obvious sample average

\[
\mu = \frac{1}{t} (X_0 + X_1 + \ldots + X_t)
\]

: estimate converges to mean \(\mu \rightarrow E[X] \) as \(T \rightarrow \infty \) by law of large numbers.

2) incremental update

initialize \(\mu_0 = 0 \)

update \(\mu_t = \left(1 - \alpha_t\right) \mu_{t-1} + \alpha_t X_t \) for \(0 < \alpha_t < 1 \)

also write this as: \(\mu_t = \mu_{t-1} + \alpha_t (X_t - \mu_{t-1}) \)

known as TD learning algorithm.

Thm: \(\mu_t \rightarrow E[X] \) as \(t \rightarrow \infty \) with probability 1 if

\[\sum_{t=1}^{\infty} \alpha_t = \infty \] (diverges)

\[\sum_{t=1}^{\infty} \alpha_t^2 < \infty \] (converges)

Intuitively:

(i) \(\alpha_t \) decays sufficiently slowly to incorporate large # samples.

(ii) \(\alpha_t \) decays sufficiently fast to allow for convergence (damp oscillations).
Temporal difference (TD) prediction

* How to evaluate policy without model?
 How to compute $V^\pi(s)$ without knowing $P(s' | s, \pi(s))$?

* Explore state space via policy π

 $\begin{align*}
 \text{actions} & \quad T_i(s_0) \quad T_i(s_1) \\
 \text{states} & \quad S_0 \quad S_1 \quad \rightarrow \\
 \text{rewards} & \quad R(s_0) \quad R(s_1)
 \end{align*}$

* Recall Bellman equation:

 $V^\pi(s) = R(s) + \gamma \sum_{s'} P(s' | s, \pi(s)) V^\pi(s')$

* TD learning algorithm

 Initialize $V_{t+1}(s) = 0$ for all s (at time $t=0$)

 Update: $V_{t+1}(s_{t+1}) = V_t(s_t) + \alpha \left[R(s_{t+1}) + \gamma V_t(s_{t+2}) - V_t(s_t) \right]$.

* Features:

 - Update after each step of experience.
 - Learns directly from experience w/o model.
 - Easy to implement.

* Asymptotic convergence

 $\lim_{t \to \infty} V_t(s) \longrightarrow V^\pi(s)$?

 Assume that each state of MDP is visited infinitely often by policy π.

 Then, TD(ϕ) converges:

 - "with probability 1" if:

 - each state s has its own learning rate $\alpha_v(s)$ where V denotes

 # visits so far to state s

 - learning rates satisfy for all states s.

 (i) $\lim_{t \to \infty} \alpha_v(s) = \infty$

 (ii) $\lim_{t \to \infty} \alpha_v^2(s) < \infty$

 Should agents in practice enforce (i) and (ii)?

 - Yes, for theoretical convergence guarantee
 - No, for non-stationary worlds where MDP is just an approximation.

 - "in mean" if step size α is constant and sufficiently small.
Q-learning

* How to optimize policy \(\Pi^* \) without model \(P(s' | s, a) \)?
* How to compute \(Q^* (s, a) \) without model?
* Explore state-action space at random:
 actions \(a_0 \) \(a_1 \) ... Not following any particular policy!
 states \(s_0 \) \(s_1 \)
 rewards \(R(s_0) \) \(R(s_1) \)

* Bellman optimality equation
 \[
 Q^* (s, a) = R(s) + \gamma \sum_{s'} P(s' | s, a) V^*(s')
 \]

* One-step Q-learning:
 Initialize \(Q_0 (s, a) = 0 \) for all states \(s \) and actions \(a \).
 \[
 Q_{t+1} (s, a) = Q_t (s, a) + \alpha [R(s_t) + \gamma \max_{a'} Q_t (s_{t+1}, a') - Q_t (s_t, a)]
 \]

* Features:
 - simple, incremental
 - model-free
 - experience-based

* Asymptotic convergence: \(\lim_{t \to \infty} Q_t (s, a) \to Q^* (s, a) \) appropriately

Thm: if each state-action pair is visited infinitely often, and a decreasing step size \(\alpha(t) \) is used for each state-action pair, then Q-learning converges with probability one.