Lecture 10:
Link-state Routing

CSE 123: Computer Networks
Stefan Savage
Link-state Routing

- Same goal as Distance Vector, but different approach
 - Tell *every* node what you know about your *direct neighbors*

- Two phases
 - Reliable flooding
 - Tell all routers what you know about your local topology
 - Path calculation (Dijkstra’s algorithm)
 - Each router computes best path over complete network

- Motivation
 - Global information allows optimal route computation
 - Straightforward to implement and verify
Broadcasting Link State

- Reliable flooding
 - Each router transmits a Link State Packet (LSP) on all links
 - A neighboring router forwards out all links except incoming
 » Keep a copy locally; don’t forward previously-seen LSPs

- Challenges
 - Packet loss
 - Out-of-order arrival

- Solutions
 - Acknowledgments and retransmissions
 - Sequence numbers
 - Time-to-live for each packet
Flooding Example

- LSP generated by X at T=0
- Nodes become orange as they receive it
Dijkstra’s Shortest Path Tree (SPT)

- So you have all of these LSPs. Now what?
- Graph algorithm for single-source shortest path tree (find best route to all nodes)

\[
\begin{align*}
S & \leftarrow \{\} \\
Q & \leftarrow \text{remaining nodes keyed by distance} \\
\text{While } Q \neq \{} & \\
& \quad u \leftarrow \text{extract-min}(Q) \quad u = \text{node with lowest cost} \\
& \quad S \leftarrow S \text{ plus } \{u\} \quad \leftarrow u \text{ is done} \\
& \quad \text{Within Q:} \\
& \quad \quad \text{for each node } v \text{ adjacent to } u \\
& \quad \quad \quad \text{“relax” the cost of } v \quad \text{is it cheaper to go through } u? \\
\end{align*}
\]
Dijkstra Example – Step 1

- Green nodes are “confirmed”
- Yellow nodes are “tentative”
- We can add ourselves to “confirmed”
Example – Step 2

- Green nodes are “confirmed”
- Yellow nodes are “tentative”
- First look at neighbors
- “5” is cheaper than “10”
- We can confirm path with cost “5”
Green nodes are “confirmed”

Yellow nodes are “tentative”

Update costs

Look at 5’s neighbors

7 is cheapest

We can confirm path with cost 7
Example – Step 4

- **Green** nodes are “confirmed”
- **Yellow** nodes are “tentative”
- Update costs
- 7 has no new neighbors
- 8 is cheapest
- We can confirm 8
Example – Step 5

- Green nodes are “confirmed”
- Yellow nodes are “tentative”
- Update costs
- No new neighbors
- 9 is cheapest
- We can path with cost 9
Example – Done
Making Something Disappear

- Need to remove failed/old links from topology
 - LSPs carry sequence numbers to distinguish new from old
 - Routers only accept (and forward) the “newest” LSP
 - Send a new LSP with cost infinity to signal a link down

- But also need to remove entire routers
 - TTL in every LSP, decremented periodically by each router
 - When TTL = 0, purge the LSP and flood the network with an LSP with TTL 0 to tell everyone else to do the same
When to Flood?

- Triggered by a topology change
 - Link or node failure/recovery or
 - Configuration change like updated link metric
 - Converges quickly, but can cause flood of updates

- Periodically
 - Typically (say) every 30 minutes
 - Corrects for possible corruption of the data
 - Limits the rate of updates, but also failure recovery
Convergence

- Getting consistent routing information to all nodes
 - E.g., all nodes having the same link-state database
 - Until routing protocol converges, strange things happen…

- Consistent forwarding after convergence
 - All nodes have the same link-state database
 - All nodes forward packets on shortest paths
 - The next router on the path forwards to the next hop
Transient Disruptions

- Detection delay
 - A node does not detect a failed link immediately
 - ... and forwards data packets into a black hole
 - Depends on timeout for detecting lost hellos
Transient Disruptions

- Inconsistent link-state database
 - Some routers know about failure before others
 - The shortest paths are no longer consistent
 - Can cause transient forwarding loops
Convergence Delay

- Sources of convergence delay
 - Detection latency
 - Flooding of link-state information
 - Shortest-path computation
 - Creating the forwarding table

- Performance during convergence period
 - Lost packets due to blackholes and TTL expiry
 - Looping packets consuming resources
 - Out-of-order packets reaching the destination

- Very bad for VoIP, online gaming, and video
Reducing Delay

- Faster detection
 - Smaller hello timers
 - Link-layer technologies that can detect failures

- Faster flooding
 - Flooding immediately
 - Sending link-state packets with high-priority

- Faster computation
 - Faster processors on the routers
 - Incremental Dijkstra’s algorithm

- Faster forwarding-table update
 - Data structures supporting incremental updates
Link State evaluation

- **Strengths**
 - Loop free as long as LS database’s are consistent
 - Can have transient routing loops – shouldn’t last long
 - Messages are small
 - Converges quickly
 - Guaranteed to converge

- **Weaknesses**
 - Must flood data across entire network (scalability?)
 - Must maintain state for entire topology (database)
Real Link-state Protocols

- OSPF (Open Shortest Path First) and IS-IS
 - Most widely used intra-domain routing protocols
 - Run by almost all ISPs and many large organizations

- Basic link state algorithm plus many features:
 - Authentication of routing messages
 - Extra hierarchy: Partition into routing areas
 - “Border” router pretends to be directly connected to all routers in an area (answers for them)
 - Load balancing: Multiple equal cost routes
Link-state vs. Distance-vector

Message complexity
- **LS:** with n nodes, E links, $O(nE)$ messages sent
- **DV:** exchange between neighbors only

Speed of Convergence
- **LS:** relatively fast
- **DV:** convergence time varies
 - May be routing loops
 - Count-to-infinity problem

Robustness: what happens if router malfunctions?
- **LS:**
 - Node can advertise incorrect link cost
- **DV:**
 - Each node computes only its own table
 - Node can advertise incorrect path cost
 - Each node’s table used by others (error propagates)
Routing so far...

- Shortest-path routing
 - Metric-based, using link weights
 - Routers share a common view of path “goodness”
- As such, commonly used inside an organization
 - RIP and OSPF are mostly used as intradomain protocols
- But the Internet is a “network of networks”
 - How to stitch the many networks together?
 - When networks may not have common goals
 - … and may not want to share information
For next time…

- Interdomain routing
- Read Ch. 4.1 in P&D
Summary

- Routing is a distributed algorithm
 - React to changes in the topology
 - Compute the paths through the network

- Shortest-path link state routing
 - Flood link weights throughout the network
 - Compute shortest paths as a sum of link weights
 - Forward packets on next hop in the shortest path

- Convergence process
 - Changing from one topology to another
 - Transient periods of inconsistency across routers