Filtering and Edge Detection

Computer Vision I
CSE252A
Lecture 12

Convolution: \(R = K \ast I \)

\[
R(i, j) = \sum_{h=-m}^{m} \sum_{k=-m}^{m} K(h, k) I(i-h, j-k)
\]

Kernel size is \(m+1 \) by \(m+1 \)

Filters are templates

- Applying a filter at some point can be seen as taking a dot-product between the image and some vector
- Filtering the image is a set of dot products
- Insight
 - filters look like the effects they are intended to find
 - filters find effects they look like

Properties of convolution

Let \(f, g, h \) be images and \(\ast \) denote convolution

\[
f \ast g(x, y) = \iint f(x-u, y-v) g(u, v) \, du \, dv
\]

- Commutative: \(f \ast g = g \ast f \)
- Associative: \(f \ast (g \ast h) = (f \ast g) \ast h \)
- Linear: for scalars \(a \) & \(b \) and images \(f, g, h \)
 \[
 (af+bg) \ast h = a(f \ast h) + b(g \ast h)
 \]
- Differentiation rule
 \[
 \frac{\partial}{\partial x} (f \ast g) = \frac{\partial f}{\partial x} \ast g = f \ast \frac{\partial g}{\partial x}
 \]

Filtering to reduce noise

- Noise is what we’re not interested in.
 - We’ll discuss simple, low-level noise today:
 Light fluctuations; Sensor noise; Quantization effects; Finite precision
 - Not complex: shadows; extraneous objects.
- A pixel’s neighborhood contains information about its intensity.
- Averaging noise reduces its effect.
Additive noise

- $I = S + N$. Noise doesn’t depend on signal.
- We’ll consider:

 \[I_i = s_i + n_i \text{ with } E(n_i) = 0 \]

 - s_i deterministic. n_i a random var.
 - n_i, n_j independent for $i \neq j$
 - n_i, n_j identically distributed

Smoothing with a Gaussian

- Notice “ringing”
 - apparently, a grid is superimposed
- Smoothing with an average actually doesn’t compare at all well with a defocussed lens
 - what does a point of light produce?
- A Gaussian gives a good model of a fuzzy blob

Smoothing by Averaging

Kernel:

An Isotropic Gaussian

- The picture shows a smoothing kernel proportional to

\[
\exp \left(-\frac{r^2}{2\sigma^2} \right)
\]

(which is a reasonable model of a circularly symmetric fuzzy blob)

Smoothing with a Gaussian

Kernel:

The effects of smoothing
Each row shows smoothing with gaussians of different width; each column shows different realizations of an image of gaussian noise.
Efficient Implementation

- Both, the BOX filter and the Gaussian filter are separable:
 - First convolve each row with a 1D filter
 - Then convolve each column with a 1D filter.

Fourier Transform

- 1-D transform (signal processing)
- 2-D transform (image processing)
- Consider 1-D
 - Time domain \leftrightarrow Frequency Domain
 - Real \leftrightarrow Complex
- Consider time domain signal to be expressed as weighted sum of sinusoid. A sinusoid $\cos(ut+\phi)$ is characterized by its phase ϕ and its frequency u
- The Fourier transform of the signal is a function giving the weights (and phase) as a function of frequency u.

Fourier Transform

Discrete Fourier Transform (DFT) of $I[x,y]$

$$F[u,v] = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} I[x,y] e^{-j2\pi(ux+vy)}$$

Inverse DFT

$$I[x,y] = \frac{1}{N} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F[u,v] e^{j2\pi(ux+vy)}$$

x,y: spatial domain
u,v: frequency domain
N by N image

Implemented via the “Fast Fourier Transform” algorithm (FFT)
Fourier basis element

\[e^{-i(\omega x + \nu y)} \]

Transform is sum of orthogonal basis functions

Vector \([u,v]'\)

- Magnitude gives frequency
- Direction gives orientation.

Magnitude gives frequency
Direction gives orientation.

And larger still...

Using Fourier Representations

Dominant Orientation

Limitations: not useful for local segmentation

Phase and Magnitude

\[e^{i\theta} = \cos \theta + i \sin \theta \]

- Fourier transform of a real function is complex
 - difficult to plot, visualize
 - instead, we can think of the phase and magnitude of the transform
- Phase is the phase of the complex transform
- Magnitude is the magnitude of the complex transform
- Curious fact
 - all natural images have about the same magnitude transform
 - hence, phase seems to matter, but magnitude largely doesn’t
- Demonstration
 - Take two pictures, swap the phase transforms, compute the inverse - what does the result look like?

This is the magnitude transform of the cheetah pic
This is the phase transform of the cheetah pic.

This is the magnitude transform of the zebra pic.

Reconstruction with zebra phase, cheetah magnitude.

Reconstruction with cheetah phase, zebra magnitude.
The Fourier Transform and Convolution

- If H and G are images, and F(.) represents Fourier transform, then
 \[F(H \ast G) = F(H)F(G) \]
 Or
 \[H \ast G = F^{-1}(F(H)F(G)) \]

- This is referred to as the **Convolution Theorem**

- Fast Fourier Transform: complexity \(O(n \log n) \) -> complexity of convolution is \(O(n^2) \).

- Thus, one way of thinking about the properties of a convolution is by thinking of how it modifies the frequencies of the image to which it is applied.

- In particular, if we look at the power spectrum, then we see that convolving image H by G attenuates frequencies where G has low power, and amplifies those which have high power.

Various Fourier Transform Pairs

- **Important facts**
 - scale function down ⇔ scale transform up
 - i.e. high frequency = small details
 - The FT of a Gaussian is a Gaussian.

- compare to box function transform

- Some other useful filtering techniques

- **Median filter**
- **Anisotropic diffusion**

Other Types of Noise

- **Impulsive noise**
 - randomly pick a pixel and randomly set ot a value
 - saturated version is called salt and pepper noise

- **Quantization effects**
 - Often called noise although it is not statistical

- **Unanticipated image structures**
 - Also often called noise although it is a real repeatable signal.

Median filters: principle

Method:

1. rank-order neighbourhood intensities
2. take middle value

- non-linear filter
- no new grey levels emerge...

Median filters: Example for window size of 3

\[
\begin{align*}
1,1,7,1,1,1,1 \\
\downarrow \\
?,1,1,1,1,1,?,
\end{align*}
\]

- advantage of this type of filter is that it
- Eliminates spikes (salt & pepper noise).
Median filters: example
filters have width 5:

<table>
<thead>
<tr>
<th>INPUT</th>
<th>MEDIAN</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Median filters: analysis
median completely discards the spike,
linear filter always responds to all aspects
median filter preserves discontinuities,
linear filter produces rounding-off effects
DON'T become all too optimistic

Median filters: images
3 x 3 median filter:

sharpens edges, destroys edge cusps and protrusions

Median filters: Gauss revisited
Comparison with Gaussian:

e.g. upper lip smoother, eye better preserved

Example of median
10 times 3 x 3 median
patchy effect
important details lost (e.g. ear-ring)

On segmentation
Physical causes of edges

1. Object boundaries
2. Surface normal discontinuities
3. Reflectance (albedo) discontinuities
4. Lighting discontinuities
Profiles of image intensity edges

Noisy Step Edge
- Derivative is high everywhere.
- Must smooth before taking gradient.

Edge is Where Change Occurs: 1-D
- Change is measured by derivative in 1D
 - Biggest change, derivative has maximum magnitude
 - Or 2nd derivative is zero.

Numerical Derivatives

Take Taylor series expansion of \(f(x) \) about \(x_0 \):
\[
f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{1}{2} f''(x_0)(x-x_0)^2 + \ldots
\]
Consider samples taken at increments of \(h \) and first two terms, we have:
\[
f(x_0+h) = f(x_0) + f'(x_0)h + \frac{1}{2} f''(x_0)h^2
\]
\[
f(x_0-h) = f(x_0) - f'(x_0)h + \frac{1}{2} f''(x_0)h^2
\]
Subtracting and adding \(f(x_0+h) \) and \(f(x_0-h) \) respectively yields:
\[
f'(x_0) = \frac{f(x_0+h) - f(x_0-h)}{2h}
\]
\[
f''(x_0) = \frac{f(x_0+h) - 2f(x_0) + f(x_0-h)}{h^2}
\]

Convolve with
- First Derivative: [-1 0 1]
- Second Derivative: [1 -2 1]

Implementing 1-D Edge Detection
1. Filter out noise: convolve with Gaussian
2. Take a derivative: convolve with [-1 0 1]
 - We can combine 1 and 2.
3. Find the peak: Two issues:
 - Should be a local maximum.
 - Should be sufficiently high.