General Statement: In this exam, we assume that every input comes with its complement.

I. Adders/Subtracters: A Half Subtracter inputs two bits \(x\) and subtrahend \(y\), and outputs the difference \(d\) and borrow-out \(b_{out}\), while a Full Subtracter inputs three bits \(x\), subtrahend \(y\) and borrow-in \(b_{in}\), and outputs the difference \(d\) and borrow-out \(b_{out}\).

I.1. Write the truth tables of the Half Subtracter and the Full Subtracter. Describe those logic using minimal sum of products expressions.

I.2. Implement a Full Subtracter with only one Half Subtracter and a minimal two level NOR gates. Draw the logic diagram.
II. Serial Adders:

II.1. A sequential adder inputs \(a_i, b_i \), the \(i \)'th bit of two binary numbers in each clock cycle for \(i = 0 \) to \(n - 1 \) and outputs the sum \(s_i \). Implement the adder with a T flip-flop, and a minimal AND-OR-NOT network (if the network is needed).

Write the state table to describe the next states and outputs.

Draw the schematic diagram.

II.2. A sequential three-at-a-time adder inputs \(a_i, b_i, e_i \), the \(i \)'th bit of three binary numbers in each clock cycle for \(i = 0 \) to \(n - 1 \) and produces the sum \(s_i \). Implement the adder with a minimal number of Full Adders and two D flip-flops. Other logic components are not needed, nor available. Draw the logic diagram.
III. Counters: A Modulo-8 Counter reads data \((D_2, D_1, D_0)\), load \(LN\), count enable \(CNT\), and generates state \((Q_2, Q_1, Q_0)\) and terminal count \(TC\). Design a counter that counts from 1815 to 2009 using four Modulo-8 Counters and minimal AND-OR-NOT networks. Draw the schematic diagram.
IV. Design a counter with a repeated output sequence 0, 1, 6, 7, 2, 3, 4 with a Modulo-8 Counter and a minimal AND-OR-NOT network. Write the Boolean expression and draw the schematic diagram.
V. System Designs:

Implement the following algorithm:
Alg(X,Y,Z,start,U,done);
Input X[7:0], Y[7:0], start;
Output U[7:0], done;
Local-object A[7:0], B[7:0], C[7:0];
S1: If start’ goto S1;
S2: A<= X || B<= Y || C<= (00001111) || done<= 0;
S3: C<=Inc(C) || If C’[7] then A<= Add(A, B) else A<= Add(A, -B);
S4: B<= Inc(B) || If B’[7] goto S3;
S5: U<= A || done<= 1 || goto S1;
End Alg

V.1. Design a data subsystem that is adequate to execute the algorithm.

V.1.1. Use a table to list the instructions and corresponding components for data path subsystem.

V.1.2. Draw the schematic diagram to show the data path subsystem. Label the inputs, outputs, and control signals of all components.
V.2. Design the control subsystem.
V.2.1. Use a table to list the value of control signals for every state.

V.2.2. Draw the state diagram.

V.2.3. Implements the control subsystem with a one hot encoding design. Draw the logic diagram.