Lecture 8: Internetworking

CSE 123: Computer Networks
Alex C. Snoeren

HW 2 due Thursday
Lecture 8 Overview

- Internet Protocol
 - Service model
 - Packet format

- Fragmentation

- Addressing
 - Subnetting
 - CIDR
Combing Networks

- Main challenge is heterogeneity of link layers:
 - Addressing
 » Each network media has a different addressing scheme
 - Bandwidth
 » Modems to terabits
 - Latency
 » Seconds to nanoseconds
 - Frame size
 » Dozens to thousands of bytes
 - Loss rates
 » Differ by many orders of magnitude
 - Service guarantees
 » Send and pray vs reserved bandwidth
Cerf & Kahn 74,
“A Protocol for Packet Network Intercommunication”
 • Foundation for the modern Internet

- **Routers** forward **packets** from source to destination
 • May cross many separate networks along the way

- All packets use a common **Internet Protocol**
 • *Any* underlying data link protocol
 • *Any* higher layer transport protocol
TCP/IP Protocol Stack

- Application Layer
 - HTTP
- Transport Layer
 - TCP
- Network Layer
 - IP
 - Ethernet interface
 - SONET interface
- Link Layer

CSE 123 – Lecture 8: Internetworking
IP Networking

Router

Ethernet

FDDI

data packet

Eth IP TCP HTTP

FDDI IP TCP HTTP

data packet

CSE 123 – Lecture 8: Internetworking
Routers

- A router is a store-and-forward device
 - Routers are connected to multiple networks
 - On each network, looks just like another host
 - A lot like a switch, except at the network layer

- Must be explicitly addressed by incoming frames
 - Not at all like a switch, which is transparent
 - Removes link-layer header, parses IP header

- Looks up next hop, forwards on appropriate network
 - Each router need only get one step closer to destination
IP Philosophy

- Impose few demands on network
 - Make few assumptions about what network can do
 - No QoS, no reliability, no ordering, no large packets
 - No persistent state about communications; no connections

- Manage heterogeneity at hosts (not in network)
 - Adapt to underlying network heterogeneity
 - Re-order packets, detect errors, retransmit lost messages…
 - Persistent network state only kept in hosts (fate-sharing)

- Service model: best effort, a.k.a. send and pray
IP Packet Header

<table>
<thead>
<tr>
<th>Field</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version (ver)</td>
<td>0-4</td>
</tr>
<tr>
<td>Header Length</td>
<td>16</td>
</tr>
<tr>
<td>Type of Service (TOS)</td>
<td>5-7</td>
</tr>
<tr>
<td>Identification</td>
<td>0-31</td>
</tr>
<tr>
<td>Time to Live (TTL)</td>
<td>8-15</td>
</tr>
<tr>
<td>Protocol</td>
<td>16</td>
</tr>
<tr>
<td>Header Checksum</td>
<td>32</td>
</tr>
<tr>
<td>Source Address</td>
<td>48</td>
</tr>
<tr>
<td>Destination Address</td>
<td>48</td>
</tr>
<tr>
<td>Options (if any)</td>
<td>32-64</td>
</tr>
<tr>
<td>Data (if any)</td>
<td>64</td>
</tr>
</tbody>
</table>

20 bytes total

HL
- R: Reserve (always 0)
- E: Extension flag (0 = no, 1 = yes)
- M: More flag (0 = end, 1 = continue)
- D: Don't fragment flag (0 = no, 1 = yes)
- F: Fragment flag (0 = no, 1 = yes)

Offset Field
- Set to 0 if flags are 0 (E, M, D, F)
- R = 0
- E = 0
- M = 0
- D = 0
- F = 0

For flags E, M, D, F:
- E = 0, M = 0, D = 0, F = 0
- E = 0, M = 1, D = 0, F = 0
- E = 0, M = 0, D = 1, F = 0
- E = 0, M = 0, D = 0, F = 1
- E = 0, M = 1, D = 1, F = 0
- E = 0, M = 0, D = 1, F = 1
- E = 0, M = 1, D = 0, F = 1
- E = 1, M = 0, D = 0, F = 0
- E = 1, M = 1, D = 0, F = 0
- E = 1, M = 0, D = 0, F = 1
- E = 1, M = 0, D = 1, F = 0
- E = 1, M = 0, D = 1, F = 1
- E = 1, M = 1, D = 0, F = 0
- E = 1, M = 1, D = 0, F = 1
- E = 1, M = 1, D = 1, F = 0
- E = 1, M = 1, D = 1, F = 1

Reserved Bit (R)
- Always set to 0

Extension Flag (E)
- Value can be set to 0 or 1

More Fragment Flag (M)
- Value can be set to 0 or 1

Don’t Fragment Flag (D)
- Value can be set to 0 or 1

Fragmented Flags (F)
- Value can be set to 0 or 1
Version field

- Which version of IP is this?
 - Plan for change
 - Very important!

- Current versions
 - 4: most of Internet today
 - 6: new protocol with larger addresses
 - What happened to 5? Standards body politics.
How big is IP header?
- In bytes/octetes
- Variable length
 » Options
- Engineering consequences of variable length...

Most IP packets are 20 bytes long
Type-of-Service

● How should this packet be treated?
 ◆ Care/don’t care for delay, throughput, reliability, cost
 ◆ How to interpret, how to apply on underlying net?
 ◆ Largely unused until 2000 (hijacked for new purposes, ECN & Diffserv)
Length

- How long is whole packet in bytes/octets?
 - Includes header
 - Limits total packet to 64K
 - Redundant?
TTL (Time-to-Live)

- How many more routers can this packet pass through?
 - Designed to limit packet from looping forever
- Each router decrements TTL field
- If TTL is 0 then router discards packet
Protocol

- Which transport protocol is the data using?
 - i.e. how should a host interpret the data

- TCP = 6
- UDP = 17
IP Checksum

- Header contains simple checksum
 - Validates content of header only

- Recalculated at each hop
 - Routers need to update TTL
 - Hence straightforward to modify

- Ensures *correct* destination receives packet
Different networks may have different frame limits (MTUs)
- Ethernet 1.5K, FDDI 4.5K

Router breaks up single IP packet into two or more smaller IP packets
- Each fragment is labeled so it can be correctly reassembled
- End host reassembles them into original packet
IP ID and Bitflags

- Source inserts unique value in identification field
 - Also known as the IPID
 - Value is copied into any fragments

- Offset field indicates position of current fragment (in bytes)
 - Zero for non-fragmented packet

- Bitflags provide additional information
 - More Fragments bit helps identify last fragment
 - Don’t Fragment bit prohibits (further) fragmentation
 - Note recursive fragmentation easily supported—just requires care with More Fragments bit
Fragmentation Example

One large datagram becomes several smaller datagrams

<table>
<thead>
<tr>
<th>length</th>
<th>ID</th>
<th>MF</th>
<th>offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>x</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>x</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>x</td>
<td>1</td>
<td>1480</td>
</tr>
<tr>
<td>1040</td>
<td>x</td>
<td>0</td>
<td>2960</td>
</tr>
</tbody>
</table>
Costs of Fragmentation

- Interplay between fragmentation and retransmission
 - A single lost fragment may trigger retransmission
 - Any retransmission will be of entire packet (why?)

- Packet must be completely reassembled before it can be consumed on the receiving host
 - Takes up buffer space in the mean time
 - When can it be garbage collected?

- Why not reassemble at each router?
Path MTU Discovery

- Path MTU is the smallest MTU along path
 - Packets less than this size don’t get fragmented

- Fragmentation is a burden for routers
 - We already avoid reassembling at routers
 - Avoid fragmentation too by having hosts learn path MTUs

- Hosts send packets, routers return error if too large
 - Hosts can set “don’t fragment” flag
 - Hosts discover limits, can size packets at source
 - Reassembly at destination as before
IP Addresses

- 32-bits in an IPv4 address
 - Dotted decimal format a.b.c.d
 - Each represent 8 bits of address

- Hierarchical: Network part and host part
 - E.g. IP address 128.54.70.238
 - 128.54 refers to the UCSD campus network
 - 70.238 refers to the host ieng6.ucsd.edu

- Which part is network vs. host?
Class-based Addressing

- Most significant bits determines “class” of address

 Class A

<table>
<thead>
<tr>
<th>Network</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

 127 nets, 16M hosts

 Class B

<table>
<thead>
<tr>
<th>Network</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0</td>
<td></td>
</tr>
</tbody>
</table>

 16K nets, 64K hosts

 Class C

<table>
<thead>
<tr>
<th>Network</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0</td>
<td></td>
</tr>
</tbody>
</table>

 2M nets, 254 hosts

- Special addresses

 - Class D (1110) for multicast, Class E (1111) experimental
 - 127.0.0.1: local host (a.k.a. the loopback address)
 - Host bits all set to 0: network address
 - Host bits all set to 1: broadcast address

CSE 123 – Lecture 8: Internetworking
IP Forwarding Tables

- Router needs to know where to forward a packet
- Forwarding table contains:
 - List of network names and next hop routers
 - Local networks have entries specifying which interface
 » Link-local hosts can be delivered with Layer-2 forwarding

- E.g. www.ucsd.edu address is 132.239.180.101
 - Class B address – class + network is 132.239
 - Lookup 132.239 in forwarding table
 - Prefix – part of address that really matters for routing
Subnetting

- Individual networks may be composed of several LANs
 - Only want traffic destined to local hosts on physical network
 - Routers need a way to know which hosts on which LAN

- Networks can be arbitrarily decomposed into subnets
 - Each subnet is simply a prefix of the host address portion
 - Subnet prefix can be of any length, specified with netmask
Subnet Addresses

- Every (sub)network has an address and a netmask
 - Netmask tells which bits of the network address is important
 - Convention suggests it be a proper prefix

- Netmask written as an all-ones IP address
 - E.g., Class B netmask is 255.255.0.0
 - Sometimes expressed in terms of number of 1s, e.g., /16

- Need to size subnet appropriately for each LAN
 - Only have remaining bits to specify host addresses
IP Address Problem (1991)

- Address space depletion
 - In danger of running out of classes A and B

- Why?
 - Class C too small for most organizations (only ~250 addresses)
 - Very few class A – very careful about giving them out (who has 16M hosts anyway?)
 - Class B – greatest problem
CIDR

- **Classless Inter-Domain Routing (1993)**
 - Networks described by variable-length prefix and length
 - Allows arbitrary allocation between network and host address

<table>
<thead>
<tr>
<th>Network</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>Mask=# significant bits representing prefix</td>
</tr>
</tbody>
</table>

- e.g. 10.95.1.2/8: 10 is network and remainder (95.1.2) is host

- **Pro:** Finer grained allocation; aggregation
- **Con:** More expensive lookup: *longest prefix match*
Longest Matching Prefix

- Forwarding table contains many prefix/length tuples
 - They *need not* be disjoint!
 - E.g. 200.23.16.0/20 and 200.23.18.0/23
 - What to do if a packet arrives for destination 200.23.18.1?
 - Need to find the longest prefix in the table which matches it (200.23.18.0/23)

- Not a simple table, requires multiple memory lookups
 - Lots and lots of research done on this problem
 - Our own George Varghese is the master of this domain
• **Straightforward way to look up LMP**
 - Arrange route entries into a series of bit tests
 - Worst case = 32 bit tests
 - Problem: memory speed is a bottleneck

![PATRICIA Trie Diagram]

- Bit to test – 0 = left child, 1 = right child
- Default 0/0
- 128.2/16
- 128.32/16
- 128.32.130/24
- 128.32.150/24
For Next Time

- Read 4.1.5-6, 9.1.3 in P&D

- Homework due next time at beginning of class