Lecture 5

Programming with openmp
Jacobi’s Method in 2D

• The update formula

\[
\text{for } (i,j) \text{ in } 0:N-1 \times 0:N-1
\]
\[
u'[i,j] = \frac{(u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i, j+1] - h^2f[i,j])}{4}
\]
\[u = u'\]
Partitioning

- Splits up the data over processors
- Different partitionings according to the processor geometry
- For P processors geometries are of the form $p_0 \times p_1$, where $P = p_0 \cdot p_1$
- For $P=4$, 3 possible geometries
Data access

- Off processor values surround each local subproblem
- Non-contiguous data
- Inefficient to access values on certain faces/edges
Multithreaded Solve()

Local mymin = 1 + ($TID \times n/nprocs),
 mymax = mymin + n/nprocs - 1;
Global resid, U[:,:,], U^{new}[:,:,]
Local done = FALSE;
while (!done) do
 Local myResid = 0;
 resid = 0;
 update U^{new} and myResid
 resid += myResid;
 if (resid < Tolerance) done = TRUE;
 U[mymin:mymax,:,] = U^{new}[mymin:mymax,:,];
end while

for i = mymin to mymax do
 for j = 1 to n do
 U^{new}[i,j] = …
 myresid += …
 end for
end for

Is this code correct?
Local mymin = 1 + ($TID * n/$nprocs),
 mymax = mymin + n/$nprocs - 1;
Global resid, U[:, :], Unew[:, :]
Local done = FALSE;
while (!done) do
 Local myResid = 0;
 BARRIER
 Only on thread 0: resid = 0;
 BARRIER
 update Unew and myResid
 CRITICAL SEC: resid += myResid
 BARRIER
 if (resid < Tolerance) done = TRUE;
 Only on thread 0: U[mymin:mymax, :] = Unew[mymin:mymax, :];
end while

for i = mymin to mymax do
 for j = 1 to n do
 Unew[i, j] = ...
 myresid += ...
 end for
end for

Does this code use minimal synchronization?
OpenMP programming

- Simpler interface than explicit threads
- Parallelization handled via annotations
- See http://www.openmp.org
- Parallel loop:

```c
#pragma omp parallel private(i) shared(n)
{
    #pragma omp for
    for(i=0; i < n; i++)
        work(i);
```

```c
i0 = $TID*n/$nthreads;
i1 = i0 + n/$nthreads;
for (i=i0; i< i1; i++)
    work(i);
```
Parallel Sections

#pragma omp parallel // Begin a parallel construct
{ // form a team
// Each team member executes the same code
#pragma omp sections // Begin work sharing
{
 // A unit of work
 #pragma omp section
 {x = x + 1;}
 #pragma omp section // Another unit
 {x = x + 1;}

 // Wait until both units complete
}
}

// End of Parallel Construct; disband team

// continue serial execution
Critical Sections

• Only one thread at a time may run the code in a critical section
• Uses mutual exclusion to implement critical sections

```c
#pragma omp parallel // Begin a parallel construct
{
#pragma omp sections // Begin worksharing
{ //
#pragma omp critical // Critical section
{x = x + 1}
#pragma omp critical // Another critical section
{x = x + 1}
... // More Replicated Code
#pragma omp barrier // Wait for all members to arrive
    } // Wait until both units of work complete
} // End parallel construct
```

• Only one thread at a time may run the code in a critical section
• Uses mutual exclusion to implement critical sections
Workload decomposition in OpenMP

- We use static assignment here, since n is known
- Dynamic assignment for irregular problems (later on)
- Translator automatically generates appropriate local loop bounds

```c
#pragma omp parallel private(i) shared(n)
{
    #pragma omp for
    for(i=0; i < n; i++)
        work(i);
}
```

- Here we parallelize the outer loop index

```c
#pragma omp parallel private(i) shared(n)
#pragma omp for
for(i=0; i < n; i++)
    for(j=0; j < n; j++) {
        u_{new}[i,j] = (u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i, j+1] - h^2f[i,j]) / 4
    }
```
Parallelization via OpenMP

- We parallelize the outer loop index

```c
#pragma omp parallel private(i) shared(n)
#pragma omp for
for(i=0; i < n; i++)
    for(j=0; j < n; j++) {
        u_{new}[i,j] = (u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i, j+1] - h^2 f[i,j]) / 4
    }
```

- Generated code

```c
mymin = 1 + ($TID * n/nprocs), mymax = mymin + n/nprocs -1
for(i=mymin; i < mymax; i++)
    for(j=0; j < n; j++) {
        u_{new}[i,j] = (u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i, j+1] - h^2 f[i,j]) / 4
    }
```
Reductions in OpenMP

- OpenMP uses a local accumulator, which it then accumulates globally when the loop is over

```c
#pragma omp parallel reduction(+:sum)
for (int i=i0; i< i1; i++)
    sum += x[i];
```
Jac3D in OpenMP

```c
#define _OPENMP
#include <omp.h>

int nthreads = 1;
#pragma omp parallel
{
    int tid = omp_get_thread_num();
    if (tid == 0) {
        nthreads = omp_get_num_threads();
        printf("Number of openMP threads: %d\n", nthreads);
    }
}
#endif
```
Jac3D in OpenMP

#pragma omp for schedule(static,bi)
for (i=1; i<nx1; i++)
 for (j=1; j<ny1; j++)
 for (k=1; k<nz1; k++)
 Un[i][j][k] = (U[i-1][j][k] + U[i+1][j][k] + U[i][j-1][k] + U[i][j+1][k] +
 U[i][j][k-1] + U[i][j][k+1] - h*h*b[i-1][j-1][k-1]) / 6.0;
#pragma omp parallel shared(U,B,c)
#pragma omp for reduction(+:err) for (int i=1; i<=nx; i++)
for (int j=1; j<=ny; j++)
 for (int k=1; k<=nz; k++){
 double du = c * (U[i-1][j][k] + U[i+1][j][k] + U[i][j-1][k] +
 U[i][j+1][k] + U[i][j][k-1] + U[i][j][k+1] - 6.0*b[i-1][j-1][k-1]);
 double r = b[i-1][j-1][k-1] - du;
 err = err + r*r;
 }
return sqrt(err)/(float)((nx+1)*(ny+1)*(nz+1));
Reducing conflict misses

- Pad the array with unused cells to change the memory access patterns
- Rivera & Tseng [Sigplan, 1998]
- Any other ways?
False sharing and conflict misses

- Boundary values, false sharing
- Large memory access strides, conflict misses
- Compare with distributed memory solution
Eliminating false sharing

• Cleanly separate locations updated by different processors
 – Manually assign scalars to a pre-allocated region of memory using pointers
 – With a block partitioned array, we want partition boundaries to coincide with a cache line boundary

• Compilers can perform some of these optimizations
Assignment #3

• Threaded implementation of a 3D Poisson Solver
• Serial and Matlab code are provided
• If you work in a team of 3, use the convergence rate accelerator
Accelerating the solve

- We initialize the solver with a guess of the solution
- The better the guess, the faster we converge
- Idea: let’s down sample the solution and solve on a coarser mesh
- Reduces computation time significantly
The ingredients

- The solution operator $S(i)$ takes $U^{(i)}$ and computes an improved solution $U^{\text{improved,}(i)}$ on same grid
 \[u^{\text{improved}}(i) = S(i)(f(i), U(i)) \]

- The restriction operator $R(i)$ maps $U^{(i)}$ to $U^{(i-1)}$
 Restricts problem on fine grid $U^{(i)}$ to coarse grid $U^{(i-1)}$ by subsampling or averaging grids of size 2^{i-1}
 \[f(i-1) = R(i)(f(i)) \]

- The prolongation (interpolation) operator $P(i-1)$ maps an approximate solution $U^{(i-1)}$ to $U^{(i)}$
 Interpolates (upsamples) solution on coarse grid $U^{(i-1)}$ to fine grid $U^{(i)}$
 \[U(i) = P(i-1)U^{(i-1)} \]
The Solution Operator $S(i)$

- The solution operator, $S(i)$, is a weighted Jacobi
- Consider the 1D problem

\[x^{\text{new}}(j) := \frac{1}{2} (u(j-1) + u(j+1) + b(j)) \]

- Pure Jacobi update:

\[x^{\text{new}}(j) := \frac{1}{3} (u(j-1) + u(j) + u(j+1) + b(j)) \]

- Weighted Jacobi update:

- In 2D, similar average of nearest neighbors
The Restriction Operator $R(i)$

- The restriction operator, $R(i)$, takes
 - a problem $U^{(i)}$ with RHS $f^{(i)}$ and
 - maps it to a coarser problem $U^{(i-1)}$ with RHS $f^{(i-1)}$
 - Averaging or sampling

- Average values of neighbors

$$u_{\text{coarse}}(i) = \frac{1}{4}u_{\text{fine}}(i-1) + \frac{1}{2}u_{\text{fine}}(i) + \frac{1}{4}u_{\text{fine}}(i+1)$$
Prolongation Operator $P(i)$

- The prolongation operator $P(i-1)$ converts a coarse grid solution $U^{(i-1)}$ to a fine grid $U^{(i)}$.
- In 1D: linearly interpolate nearest coarse neighbors

 $u_{\text{fine}}(i) = u_{\text{coarse}}(i)$ if the fine grid point i is also a coarse one,

 else

 $u_{\text{fine}}(i) = \frac{1}{2}(u_{\text{coarse}}(\text{left of } i) + u_{\text{coarse}}(\text{right of } i))$

Courtesy Jim Demmel