Lecture 4

Programming with threads
Announcements
SPMD execution model

• Most parallel programming is implemented under the **Same Program Multiple Data** programming model = SPMD
• Other names for this model are “loosely synchronous” or “bulk synchronous”
• Programs execute as a set of P processes or threads
 – We specify P when we run the program
 – Each process/thread is usually assigned to a different physical processor
• Each process or thread
 – is initialized with the same code
 – has an associated *rank*, a unique integer in the range 0:P-1
 – executes instructions at its own rate
• Processes communicate via messages, threads through shared memory
Shared memory programming with threads

- A collection of concurrent instruction streams, called *threads*
- Each thread has a unique thread ID
- A new storage class: shared data
- A thread is similar to a procedure call with notable differences
 - A procedure call is “synchronous;” a return indicates completion
 - A spawned thread executes asynchronously until it completes
 - Both share global storage with caller
 - Synchronization is needed when updating shared state
Why threads?

- Processes are “heavy weight” objects scheduled by the OS
 - Protected address space, open files, and other state
- A thread, AKA a lightweight process (LWP) is sometimes more appropriate
 - Threads share the address space and open files of the parent, but have their own stack
 - Reduced management overheads
 - Kernel scheduler multiplexes threads
Practical issues

- Thread creation is faster than process creation (real time)
- Moving data in shared memory is cheaper than passing a message through shared memory

https://computing.llnl.gov/tutorials/pthreads

<table>
<thead>
<tr>
<th></th>
<th>CPU/node</th>
<th>Fork (µs)</th>
<th>Create (µs)</th>
<th>MPI Shared Mem (GB/sec)</th>
<th>Mem - CPU (GB/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD 2.4 GHz Opteron</td>
<td>8</td>
<td>41.1</td>
<td>0.66</td>
<td>1.2</td>
<td>5.3</td>
</tr>
<tr>
<td>IBM 1.9 GHz POWER5 p5-575</td>
<td>8</td>
<td>64.2</td>
<td>1.75</td>
<td>4.1</td>
<td>16</td>
</tr>
<tr>
<td>INTEL 2.4 GHz Xeon</td>
<td>2</td>
<td>55.0</td>
<td>1.64</td>
<td>0.3</td>
<td>4.3</td>
</tr>
<tr>
<td>Intel 1.4 GHz Itanium 2</td>
<td>4</td>
<td>54.5</td>
<td>2.03</td>
<td>1.8</td>
<td>6.4</td>
</tr>
</tbody>
</table>
Threads in practice

• A common interface is the POSIX Threads “standard” (pthreads): IEEE POSIX 1003.1c-1995
 – Beware of non-standard features
• Another approach is to use program annotations via openMP
Programming model

• Start with a single root thread
• Fork-join parallelism to create concurrently executing threads
• Threads may or may not execute on different processors, and might be interleaved
• Scheduling behavior specified separately
Coding with pthreads

```c
#include <pthread.h>
#include <assert.h>
#include <stdint.h>

void *Hello(void *tid) {
    sleep(3);
    int64_t _tid = reinterpret_cast<int64_t>(arg);
    int TID = _tid;
    printf("Hello from thread %d\n", (int) tid);
    pthread_exit(NULL); return 0;
}

int main(int argc, char *argv[]) {
    int NT = 3, status;
    pthread_t th[NT];
    for(int t=0;t<NT;t++)
        assert(pthread_create(&th[t],NULL, Hello, (void *)t));
    for(int t=0;t<NT;t++)
        assert(pthread_join(th[t], (void **) &status));
    pthread_exit(NULL);
}
```

% g++ th8.c -lpthread
% a.out
Hello from thread 0
Hello from thread 1
Hello from thread 2
% a.out
Hello from thread 1
Hello from thread 0
Hello from thread 2
Computing a sum in parallel

• Also see: dotprod_mutex.c in the LLNL tutorial

Globals:

 int64_t *x, global_sum, N, NT;

Main:

for (int64_t i=0; i < N; i++) x[i] = i+1;

 global_sum = 0;

pthread_t thrd[NT];

for(int t=0;t<NT;t++)

 pthread_create(&thrd[t], NULL, summ,reinterpret_cast<void *>(t));

//Join threads…

 cout << "The sum of 1 to " << N << " is: " << sum << endl;
The computation

```c
void *summ(void *arg){
    computes TID
    int64_t i0 = TID*(N/NT), i1 = i0 + (N/NT);
    for (int64_t i=i0; i<i1; i++)
        global_sum += x[i];
    pthread_exit(NULL); return 0;
}
```

The sum of 1 to 1000 is: 500500

The sum of 1 to 10000 is: 41957380

Result verified to be INCORRECT, should be 50005000
Race conditions

- Consider the statement, assuming $x == 0$
 \[x = x + 1; \]

- Generated code
 - $r1 \leftarrow (x)$
 - $r1 \leftarrow r1 + \#1$
 - $r1 \rightarrow (x)$

- Possible interleaving with two threads
 \[
 \begin{align*}
 \text{P1} & : & r1 & \leftarrow x \\
 & & r1 & \leftarrow r1 + \#1 \\
 & & x & \leftarrow r1
 \\
 \text{P2} & : & r1 & \leftarrow x \\
 & & r1 & \leftarrow r1 + \#1 \\
 & & x & \leftarrow r1
 \end{align*}
 \]
 - $r1(P1)$ gets 0
 - $r2(P2)$ also gets 0
 - $r1(P1)$ set to 1
 - $r1(P1)$ set to 1
 - $P1$ writes its R1
 - $P2$ writes its R1
Race conditions

• A *Race* condition arises when the timing of accesses to shared memory can affect the outcome
• We say we have a *non-deterministic* computation
• Usually we want to avoid non-determinism
• If we compute with the same inputs we want to obtain the same results
• Not necessarily true for operations that have side effects (global variables, I/O and random number generators)
• Memory consistency and cache coherence are necessary but not sufficient conditions for ensuring program correctness
• We need to take steps to avoid race conditions through appropriate program synchronization
Critical Sections

• Each thread sums into the shared variable x, to which it has momentary, exclusive access
• Threads take turns executing a critical section
• A critical section is non-parallelizing computation

Begin Critical Section

global_sum += x[i] ;
End Critical Section
Mutual exclusion

- Pthreads provides mutex variables (locks)
- May be CLEAR or SET
- Lock() waits if the lock is set, else sets the lock
- Unlock clears the lock if set

```c
pthread_mutex_t mutex_sum;
pthread_mutex_init(&mutex_sum, NULL));
pthread_mutex_lock (&mutex_sum);
    global_sum += x[i] ; // Critical Section
pthread_mutex_unlock (&mutex_sum);
```
Implementation issues

• Hardware support
 – Test and set: atomically test a memory location and then set it
 – Cache coherence protocol provides synchronization

• Scheduling issues
 – Busy waiting or spinning
 – Yield process
 – Pre-emption by scheduler
A performance bug

```c
void *summ(void *arg) {
    TID = ...;
    int i0 = TID*(N/NT), i1 = i0 + (N/NT);
    for (int64_t i=i0; i<i1; i++) {
        pthread_mutex_lock (&mutex_sum);
        global_sum += x[i] ;
        pthread_mutex_unlock (&mutex_sum);
    }
    pthread_exit(NULL); return 0;
}
```
More on Correctness

```c
int64_t sum = 0;       // Global
void *sumIt(void *arg){
    int TID =  unique thread ID (arg);
    pthread_mutex_lock (&mutex_sum);
    sum += (TID+1);
    pthread_mutex_unlock (&mutex_sum);
    if (TID == 0)
        cout << "Sum of 1 : " << NT << " = " << sum << endl;
    pthread_exit(NULL); return NULL; }
```

```bash
% g++ sumIt.C -lpthread
% a.out 8
# threads: 8
The sum of 1 to 8 is 1
After join returns, the sum of 1 to 8 is: 36
```
Barrier synchronization

• Why was the sum reported incorrectly?
• Don’t read a location updated by other threads that had not had the chance to produce its contribution (true dependence)
• Don’t overwrite the values used by other processes in the current iteration until they have been consumed (anti-dependence)

```cpp
pthread_mutex_lock (&mutex_sum);
sum += 2*(TID+1);
pthread_mutex_unlock (&mutex_sum);
Barrier();
if (TID == 0)
    cout << "Total sum is " << sum << endl;
```
Building a linear time barrier with locks

Mutex arrival=UNLOCKED, departure=LOCKED;
int count=0;

void Barrier()
 arrival.lock(); // atomically count the
 count++;
 // waiting threads
 if (count < n$proc) arrival.unlock();
 else departure.unlock(); // last processor
 // enables all to go
 departure.lock();
 count--;
 // atomically decrement
 if (count > 0) departure.unlock();
 else arrival.unlock(); // last processor resets state
Iterative mesh methods
Mesh based methods

• Many physical problems are simulated on a uniform mesh in 1, 2 or 3 dimensions

• Field variables defined on a discrete set of points

• A mapping from ordered pairs to physical observables like temperature and pressure

• One application: differential equations
Differential equations

- A differential equation is a set of equations involving derivatives of a function (or functions), and specifies a solution to be determined under certain constraints.
- Constraints often specify boundary conditions or initial values that the solution must satisfy.
- When the functions have multiple variables we have a Partial Differential Equation (PDE)
 \[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \] within a square box, \(x, y \in [0,1] \)
 \[u(x,y) = \sin(x)\sin(y) \] on \(\partial \Omega \), perimeter of the box.
- When the functions have a single variable we have an Ordinary Differential Equation (ODE)
 \[-u''(x) = f(x), \; x \in [0,1], \; u(0) = a, \; u(1) = b \]
Solving an ODE with a discrete approximation

• Solve the ODE
 \[-u''(x) = f(x), \ x \in [0, 1]\]

• Define \(u_i = u(i \times h) \) at points
 \[x = i \times h, \quad h = 1/(N-1) \]

• Approximate the derivatives
 \[u'' \approx (u(x+h) - 2u(x) + u(x-h))/h^2 \]

• Obtain the system of equations
 \[(u_{i-1} - 2u_i + u_{i+1})/h^2 = f_i, \quad i \in 1..n-2 \]
Iterative solution

• Rewrite the system of equations
 \[\frac{-u_{i-1} + 2u_i - u_{i+1}}{h^2} = f_i, \quad i \in 1..n-1\]

• It can be shown that the following \textit{Gauss-Seidel} algorithm will arrive at the solution ...

• …. assuming an initial guess for the \(u_i\)

\begin{verbatim}
Repeat until the result is satisfactory
 for i = 1 : N-1
 \[u_i = \frac{(u_{i+1} + u_{i-1} + h^2 f_i)}{2}\]
 end for
end Repeat
\end{verbatim}
Convergence

- Convergence is slow
- We reach the desired precision in $O(N^2)$ iterations
Estimating the error

• How do we know when the answer is “good enough?”
 • The computed solution has reached a reasonable approximation to the exact solution
 • We validate the computed solution in the field, i.e. wet lab experimentation
• But we often don’t know the exact solution, and must estimate the error
Using the residual to estimate the error

• Recall the equations
 \[(-u_{i-1} + 2u_i - u_{i+1})/h^2 = f_i, \ i \in 1..n-1 \quad [Au = f] \]

• Define the residual \(r_i \):
 \[r_i = (-u_{i-1} + 2u_i - u_{i+1})/h^2 - f_i, \ i \in 1..n-1 \]

• Thus, our computed solution is correct when
 \(r_i = 0 \)

• We can obtain a good estimate of the error by finding the maximum \(r_i \) \(\forall i \)

• Another possibility is to take the root mean square (L2 norm)
 \[\sqrt{\sum_i r_i^2} \]
Parallel implementation

• We partition the data into intervals, assigning each to a unique thread
• Each interval depends on two endpoint values that get updated by another thread
Dependences

• Our attempt to parallelize the algorithm fails: there are **loop carried dependences**

• The value of $u[i]$ computed in iteration i depends on $u[i]$ computed in iteration $i-1$

```latex
for i = 1 : N-1
    u[i] = (u[i-1]+u[i+1] +h*h*f[i])/2
end for
```
Parallel implementation

• Renaming the LHS of the assignment eliminates the dependences
• Two arrays u and u_{new}
• This is Jacobi’s method

\[
\text{for } i = 1 : N-1 \\
\quad u_{\text{new}}[i] = (u[i-1]+u[i+1] +h*h*f[i])/2 \\
\text{end for} \\
\text{Swap } u \text{ and } u_{\text{new}}
\]
Tradeoffs

- We can now parallelize the algorithm, since we have eliminated the loop carried dependencies.
- But we have reduced the convergence rate by about a factor of two.
- Doubles the amount of work needed to solve the problem.
- This kind of tradeoff is common.
- Which algorithm should be used in the “fastest serial” implementation?
Convergence check

• Each thread computes the error for its assigned part of the problem
• We need a global error so that we compute a result that is consistent with the single processor implementation
• We form a global sum of the local contributions
Stencil operations in higher dimensions

- We call the numerical operator that sweeps over the solution array a **stencil operator**
- In 1D we have functions of one variable
- In n dimensions we have n variables
- In 2D:
 \[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \Delta u = f(x, y) \]
 within a square box, \(x, y \in [0,1]\)

\[u(x, y) = \sin(x) \cdot \sin(y) \] on \(\partial \Omega\), perimeter of the box

Define \(u_{i,j} = u(x_i, y_j)\) at points \(x_i = i \times h, \quad y_j = j \times h, \quad h = 1/(N-1)\)

- Approximate the derivatives
 \[u_{xx} \approx (u(x_{i+1}, y_j) + u(x_{i-1}, y_j) + u(x_i, y_{j+1}) + u(x_i, y_{j-1}) - 4u(x_i, y_j))/h^2 \]
Jacobi’s Method in 2D

• The update formula

\[
\text{for } (i,j) \text{ in } 0:N-1 \times 0:N-1
\]
\[
u'[i,j] = \frac{(u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i,j+1] - h^2f[i,j])}{4}
\]
\[u = u'
\]