Introductory Techniques for 3-D Computer Vision

Emanuele Trucco
Heriot-Watt University,
Edinburgh, UK

Alessandro Verri
Università di Genova,
Genova, Italy

Prentice Hall
Upper Saddle River, New Jersey 07458
8.1 Introduction

Until now, we have studied visual computations on single images, or two images acquired simultaneously. In this chapter, we broaden our perspective and focus on the processing of images over time. More precisely, we are interested in the visual information that can be extracted from the spatial and temporal changes occurring in an image sequence.

Definition: Image Sequence

An image sequence is a series of N images, or frames, acquired at discrete time instants $t_k = t_0 + k\Delta t$, where Δt is a fixed time interval, and $k = 0, 1, \ldots, N-1$.

In order to acquire an image sequence, you need a frame grabber capable of storing frames at a fast rate. Typical rates are the so-called frame rate and field rate, corresponding to a time interval Δt of 1/30sec and 1/60sec respectively. If you are allowed to choose a different time interval, or simply want to subsample an image sequence, make sure that Δt is small enough to guarantee that the discrete sequence is a representative sampling of the continuous image evolving over time; as a rule of thumb, this means that the apparent displacements over the image plane between frames should be at most a few pixels.

Assuming the illumination conditions do not vary, image changes are caused by a relative motion between camera and scene; the viewing camera could move in front of a static scene, or parts of the scene could move in front of a stationary camera, or, in general, both camera and objects could be moving with different motions.

8.1.1 The Importance of Visual Motion

The temporal dimension in visual processing is important primarily for two reasons. First, the apparent motion of objects onto the image plane is a strong visual cue for understanding structure and 3-D motion. Second, biological visual systems use visual motion to infer properties of the 3-D world with little a priori knowledge of it. Two simple examples may be useful to illustrate these points.

Example 1: Random Dot Sequences. Consider an image of random dots, generated by assigning to each pixel a random grey level. Consider a second image obtained by shifting a squared, central region of the first image by a few pixels, say, to the right, and filling the gap thus created with more random dots. Two such images are shown in Figure 8.1. If you display the two images in sequence on a computer screen, in the same window and one after the other at a sufficiently fast rate, you will unmistakably see a square moving sideways back and forth against a steady background. Notice that the
visual system bases its judgement on the only information available in the sequence; that is, the displacement of the square in the two images.\footnote{Incidentally, you can look at the two images of Figure 8.1 as a random-dot stereogram to perceive a square floating in the background. Stand a distance (or a sheet of paper of the same size) between the two images and move your eyes against the distance, so that each eye sees only one image. Focus your eyes behind the page. After a while, the two images should fuse and provide the impression of a square floating against the background.}

Example 2: Computing Time-to-Impact. Visual motion allows us to compute useful properties of the observed 3-D world with very little knowledge about it. Consider a planar version of the usual pinhole camera model, and a vertical bar perpendicular to the optical axis, travelling towards the camera with constant velocity as shown in Figure 8.2. We want to prove a simple but very important fact: It is possible to compute the time, \(t \), taken by the bar to reach the camera only from image information; that is, without knowing either the real size of the bar or its velocity in 3-D space.\footnote{In the biologically-oriented community of computer vision, \(t \) is called, rather pessimistically, time-to-collision or even time-to-contact!}

As shown in Figure 8.2, we denote with \(L \) the real size of the bar, with \(V \) its constant velocity, and with \(f \) the focal length of the camera. The origin of the reference frame is the projection center. If the position of the bar on the optical axis is \(D(t) = D_0 \) at time \(t = 0 \), its position at a later time \(t \) will be \(D = D_0 - Vt \). Note that \(L, V, f, D_0 \), and the choice of the time origin are all unknown, but that \(t \) can be written as

\[
\tau = \frac{V}{D},
\]

From Figure 8.2, we see that \(l(t) \), the apparent size of the bar at time \(t \) on the image plane, is given by

\[
l(t) = f \frac{L}{D}.
\]
If we now compute the time derivative of \(f(t) \),

\[
\frac{df(t)}{dt} = \frac{d}{dt} \left(\frac{L}{D} \right) = \frac{1}{D} \frac{dL}{dt} - \frac{L}{D^2} \frac{dD}{dt},
\]

take the ratio between \(f(t) \) and \(\frac{df(t)}{dt} \), and use (8.1), we obtain

\[
\frac{f(t)}{\frac{df(t)}{dt}} = \tau. \tag{8.2}
\]

This is the equation we were after: since both the apparent size of the bar, \(f(t) \), and its time derivative, \(\frac{df(t)}{dt} \), are measured from the images, (8.2) allows us to compute \(\tau \) in the absence of any 3-D information, like the size of the bar and its velocity.

8.1.1 The Problems of Motion Analysis

It is now time to state the main problems of motion analysis. The analogies with stereo suggest to begin by dividing the motion problem into two subproblems.

Two Subproblems of Motion

- **Correspondence**: Which elements of the frame correspond to which elements of the next frame of the sequence?
- **Reconstruction**: Given a number of corresponding elements, and possibly knowledge of the camera's extrinsic parameters, what can we say about the 3-D motion and structure of the observed world?

Main Differences between Motion and Stereo

- **Correspondence**: As image sequences are sampled temporally at usually high rates, the spatial differences (disparities) between consecutive frames are, on average, much smaller than those of typical stereo pairs.
- **Reconstruction**: Unlike stereo, in motion the relative 3-D displacement between the viewing camera and its scene is not necessarily caused by a single 3-D rigid transformation.
Figure 8.3 Three frames from a low image sequence (left to right and top to bottom) and the optical flow computed from the sequence, showing that the plant in the foreground is moving towards the camera, and the soft toys away from it.

Regarding correspondence, the fact that motion sequences make many closely sampled frames available for analysis is an advantage over the stereo case for at least two reasons. First, feature-based approaches can be made more effective by tracking techniques, which exploit the past history of the features' motion to predict disparities in the next frame. Second, due to the generally small spatial and temporal differences between consecutive frames, the correspondence problem can also be cast as the problem of estimating the apparent motion of the image brightness pattern, usually called optical flow (see Figure 8.3).
We shall use two strategies for solving the correspondence problem.

Differential methods (section 8.4.1) lead to **dense measures**; that is, computed at each image pixel. They use estimates of time derivatives, and require thereby image sequences sampled closely.

Matching methods (section 8.4.2) lead to **sparse measures**; that is, computed only at a subset of image points. We shall place emphasis on **Kalman filtering** as a technique for matching and tracking efficiently sparse image features over time.

Unlike correspondence, and perhaps not surprisingly, reconstruction is more difficult in motion than in stereo. Even in the presence of only one 3-D motion between the viewing camera and the scene, frame-by-frame recovery of motion and structure turns out to be more sensitive to noise. The reason is that the baseline between consecutive frames, regarded as a stereo pair, is very small (see Chapter 7). 3-D motion and structure estimation from both sparse and dense estimates of the image motion is discussed in sections 8.5.1 and 8.5.2, respectively.

This chapter discusses and motivates methods for solving correspondence and reconstruction under the following simplifying assumption.

Assumption

There is only one rigid, relative motion between the camera and the observed scene, and the illumination conditions do not change.

This assumption of single, rigid motion implies that the 3-D objects observed cannot move in different motions. This assumption is violated, for example, by sequences of football matches, motorway traffic, or busy streets, but satisfied, by, say, the sequence of a building viewed by a moving observer. The assumption also rules out flexible (nonrigid) objects, deformable objects like clothes or moving human bodies are excluded.

If the camera is looking at more than one moving object, or you simply cannot assume a moving camera in a static environment, a third subproblem must be added.

The Third Subproblem of Motion

The segmentation problem: What are the regions of the image plane which correspond to different moving objects?

The main difficulty here is a chicken and egg problem: should we first solve the matching problem and then determine the regions corresponding to the different moving objects, or find the regions first, and then look for correspondences? This question is addressed in section 8.6 in the hypothesis that the viewing camera is not moving. Pointers to solutions to this difficult problem in more general cases are given in the Further Readings.
Section 8.2 The Motion Field of Rigid Objects

We now begin by establishing some basic facts.

8.2 The Motion Field of Rigid Objects

Definition: Motion Field

The motion field is the 2-D vector field of velocities of the image points, induced by the relative motion between the viewing camera and the observed scene.

The motion field can be thought of as the projection of the 3-D velocity field on the image plane (to visualize this vector field, imagine to project the 3-D velocity vectors on the image). The purpose of this section is to get acquainted with the theory and geometrical properties of the motion field. We shall work in the camera reference frame, ignoring the image reference frame and the pixelization. The issue of camera calibration will be raised in due time.

This section presents some essential facts of motion fields, compares disparity representations in motion and stereo, analyzes two special cases of rigid motion leading to generally useful facts, and introduces the concept of motion parallax.

8.2.1 Basics

Notation. We let \(\mathbf{P} = [X, Y, Z]^T \) be a 3-D point in the usual camera reference frame: The projection center is in the origin, the optical axis is the Z axis, and \(f \) denotes the focal length. The image of a scene point, \(\mathbf{P} \), is the point \(\mathbf{p} \) given by

\[
\mathbf{p} = \frac{f}{Z} \mathbf{P} = \frac{f}{Z} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}.
\]

(8.3)

As usual (see Chapter 2), since the third coordinate of \(\mathbf{p} \) is always equal to \(f \), we write \(\mathbf{p} = [x, y]^T \) instead of \(\mathbf{p} = [x, y, f]^T \). The relative motion between \(\mathbf{P} \) and the camera can be described as

\[
\mathbf{V} = -\mathbf{T} - \omega \times \mathbf{P},
\]

(8.4)

where \(\mathbf{T} \) is the translational component of the motion, and \(\omega \) is the angular velocity. As the motion is rigid, \(\mathbf{T} \) and \(\omega \) are the same for any \(\mathbf{P} \). Its components, (8.4) reads

\[
V_x = -T_z - \omega_z Z + \omega_y Y
\]

\[
V_y = -T_y - \omega_y X + \omega_z Z
\]

\[
V_z = -T_z - \omega_y Y + \omega_x X.
\]

(8.5)

Remember, this means that we consider the intrinsic parameters known.

Note that \(Z \) denotes a velocity vector only in this chapter, not a displacement vector as in the text of the book.
The Basic Equations of the Motion Field. To obtain the relation between the velocity \(\mathbf{v} \) in space and the corresponding velocity of \(\mathbf{p} \) on the image plane, we take the time derivative of both sides of (8.3), which gives an important set of equations.

\[
\mathbf{v} = \frac{\mathbf{z} \mathbf{y} - \mathbf{v}_1 \mathbf{p}}{Z^2},
\]

\[
\begin{align*}
\mathbf{v}_x &= \frac{z_x - t_x f}{Z} - \omega_z f + \omega_y f + \frac{\omega_y t_y f}{f} \\
\mathbf{v}_y &= \frac{z_y - t_y f}{Z} + \omega_z f - \omega_x f + \frac{\omega_x t_x f}{f}
\end{align*}
\]

Notice that the motion field is the sum of two components, one of which depends on translation only, the other on rotation only. In particular, the translational components of the motion field are

\[
\mathbf{v}_x^T = \frac{z_x - t_x f}{Z},
\]

\[
\mathbf{v}_y^T = \frac{z_y - t_y f}{Z},
\]

and the rotational components are

\[
\begin{align*}
\mathbf{v}_x^R &= -\omega_y f + \omega_z f + \frac{\omega_y t_y f}{f} \\
\mathbf{v}_y^R &= \omega_x f - \omega_z f + \frac{\omega_x t_x f}{f}.
\end{align*}
\]

Since the component of the motion field along the optical axis is always equal to 0, we shall write \(\mathbf{v} = [\mathbf{v}_x, \mathbf{v}_y]^T \) instead of \(\mathbf{v} = [\mathbf{v}_x, \mathbf{v}_y, 0]^T \). Notice that, in the last two pairs of equations, the terms depending on the angular velocity, \(\omega \), and depth, \(Z \), are decoupled. This discloses an important property of the motion field: the parts of the motion field that depend on angular velocity do not carry information on depth.

Comparing Disparity Representations in Stereo and Motion. As we said before, stereo and motion pose similar computation problems, and one of these is correspondence. Point displacements are represented by disparity maps in stereo, and by motion fields in motion. An obvious question is, how similar are disparity maps and motion fields? The key difference is that the motion field is a differential concept, stereo disparity is not. The motion field is based on velocity, and therefore on time derivative.
Consecutive frames must be as close as possible to guarantee good discrete approximations of the continuous time derivatives. In stereo, there is no such constraint on the two images, and the disparities can take, in principle, any value.

Stereo Disparity Map and Motion Field

The spatial displacements of corresponding points between the images of a stereo pair (forming the stereo disparity map) are finite, and, in principle, unconstrained.

The spatial displacements of corresponding points between consecutive frames of a motion sequence (forming the motion field) are discrete approximations of time-varying derivatives, and must therefore be suitably small.

The motion field coincides with the stereo disparity map only if spatial and temporal differences between frames are sufficiently small.

8.2.2 Special Case 1: Pure Translation

We now analyze the case in which the relative motion between the viewing camera and the scene has no rotational component. The resulting motion field has a peculiar spatial structure, and its analysis leads to concepts very useful in general.

Since \(\omega = 0 \), (8.7) read

\[
\begin{align*}
v_x &= \frac{T_y - T_y f}{Z}, \\
v_y &= \frac{T_z y - T_z f}{Z},
\end{align*}
\]

(8.8)

We first consider the general case in which \(T_z \neq 0 \), introducing a point \(p_0 = [x_0, y_0]^T \) such that

\[
\begin{align*}
x_0 &= f T_y/T_z, \\
y_0 &= f T_z/T_z.
\end{align*}
\]

(8.9)

(8.8) becomes

\[
\begin{align*}
v_x &= \frac{(x - x_0)T_z}{Z}, \\
v_y &= \frac{(y - y_0)T_z}{Z}.
\end{align*}
\]

(8.10)

Equation (8.10) say that the motion field of a pure translation is radial: It consists of vectors radiating from a common origin, the point \(p_0 \), which is therefore the vanishing point of the translation direction. In particular, if \(T_z < 0 \), the vectors point away from \(p_0 \), and \(p_0 \) is called the focus of expansion (Figure 8.4 (a)). If \(T_z > 0 \), the motion field vectors point towards \(p_0 \), and \(p_0 \) is called the focus of contraction (Figure 8.4 (b)). In addition, the length of \(\mathbf{r} = \mathbf{r}(p) \) is proportional to the distance between \(p \) and \(p_0 \), and inversely proportional to the depth of the 3-D point \(P \).
Notice that the point p_0 retains its significance and many of its properties even in the presence of a rotational component of 3-D motion (section 8.5.2).

If T_z vanishes (a rather special case), (8.8) become

$$v_x = -\frac{f}{Z} T_x$$
$$v_y = -\frac{f}{Z} T_y$$

Therefore, if $T_z = 0$, all the motion field vectors are parallel (see Figure 8.4(c)) and their lengths are inversely proportional to the depth of the corresponding 3-D points.

In homogeneous coordinates, there would be no need to distinguish between the two cases $T_z \neq 0$ and $T_z = 0$. For all possible values of T_z, including $T_z = 0$, p_0 is the vanishing point of the direction in 3-D space of the translation vector T, and the 3-D line through the center of projection and p_0 is parallel to T.

Following is a summary of the main properties of the motion field of a purely translational motion.

Pure Translation: Properties of the Motion Field

1. If $T_z \neq 0$, the motion field is *radial* (see (8.10)), and all vectors point towards (or away from) a single point, p_0, given by (8.8). If $T_z = 0$, the motion field is *parallel*.

2. The length of motion field vectors is inversely proportional to the depth Z. If $T_z \neq 0$, it is also inversely proportional to the distance from p to p_0.

3. p_0 is the vanishing point of the direction of translation (see (8.10)).

4. p_0 is the intersection of the ray parallel to the translation vector with the image plane.
8.2.3 Special Case 2: Moving Plane

Planes are common surfaces in man-made objects and environments, so it is useful to investigate the properties of the motion field of a moving plane. Assume that the camera is observing a planar surface, \(\pi \), of equation

\[
\mathbf{n}^T \mathbf{p} = d
\]

(8.11)

where \(\mathbf{n} = [n_x, n_y, n_z]^T \) is the unit vector normal to \(\pi \), and \(d \) the distance between \(\pi \) and the origin (the center of projection). Let \(\pi \) be moving in space with translational velocity \(\mathbf{T} \) and angular velocity \(\omega \), so that both \(\mathbf{n} \) and \(d \) in (8.11) are functions of time. By means of (8.3), (8.11) can be rewritten as

\[
\frac{n_x x + n_y y + n_z f}{f} Z = d.
\]

(8.12)

Solving for \(Z \) in (8.12), and plugging the resulting expression into (8.7), we have

\[
u_x = \frac{1}{f d} (a_0 x^2 + a_2 x y + a_3 x f x + a_4 f y + a_5 f^2) \\
u_y = \frac{1}{f d} (a_0 y^2 + a_2 y x + a_3 f y + a_4 f x + a_5 f^2)
\]

(8.13)

where

\[
a_0 = -d a_0 + T a_2, \quad a_2 = d a_0 + T a_3, \\
a_3 = T a_2 - T a_3, \quad a_4 = d a_0 - T a_3, \\
a_5 = -d a_0 - T a_3,
\]

The (8.13) states, interestingly, that the motion field of a moving planar surface, at any instant \(t \), is a quadratic polynomial in the coordinates \(x, y, f \) of the image points.

The remarkable symmetry of the time-dependent coefficients \(a_1 \ldots a_5 \) is not co-incidental. You can easily verify that the \(a_i \) remain unchanged if \(d, \mathbf{n}, \mathbf{T} \), and \(\omega \) are replaced by

\[
d' = d \]
\[
\mathbf{n}' = \mathbf{T}/||\mathbf{T}|| \\
\mathbf{T}' = ||\mathbf{T}|| \mathbf{n} \\
\omega' = \omega + \mathbf{n} \times \mathbf{T}/d.
\]
This means that, apart from the special case in which \(\mathbf{u} \) and \(\mathbf{T} \) are parallel, the same motion field can be produced by two different planar motions.\(^6\)

The practical consequence is that it is usually impossible to recover uniquely the 3-D structure parameters \(\mathbf{u} \) and \(\mathbf{d} \), and motion parameters \(\mathbf{T} \) and \(\mathbf{w} \), of a planar set of points from the motion field alone.

You might be tempted to regard this discussion on the motion field of a planar surface as a mere mathematical curiosity. On the contrary, we can draw at least two important and general conclusions from it.

1. Since the motion field of a planar surface is described exactly and globally by a polynomial of second degree (see (8.13)), the motion field of any smooth surface is likely to be approximated well by a low-order polynomial even over relatively large regions of the image plane (Exercise 8.1). The useful consequence is that very simple parametric models enable a quite accurate estimation of the motion field in rather general circumstances (section 8.4.1).

2. As algorithms recovering 3-D motion and structure cannot be based on motion estimates produced by coplanar points, measurements must be made at many different locations of the image plane in order to minimize the probability of looking at points that lie on planar or nearly planar surfaces.\(^7\) We will return to this point in sections 8.5.1 and 8.5.2.

We conclude this section with a summary of the main properties of the motion field of a planar surface.

Moving Plane: Properties of Motion Field

1. The motion field of a planar surface is, at any given instant, a quadratic polynomial in the image coordinates.

2. Due to the special symmetry of the polynomial coefficients, the same motion field can be produced by two different planar motions undergoing different 3-D motions.

8.2.4 Motion Parallax

The decoupling of rotational parameters and depth in the (8.7) is responsible for what is called motion parallax. Informally, motion parallax refers to the fact that the relative motion field of two simultaneously coincident points does not depend on the rotational

\(^6\)This result should not surprise you. Planar surfaces are generally the eight-point algorithm (Chapter 7), for example, fails to yield a unique solution if the points are all coplanar in 3-D space.

\(^7\)A "nearly planar" surface is a surface that can be approximated by a plane within a given tolerance, which is typically proportional to the distance of the surface from the image plane.
component of motion in 3-D space; this section makes this statement more precise. Motion parallax will be used in section 8.5.2 to compute structure and motion from optical flow.

Let two points \(\mathbf{P} = [X, Y, Z]^T \) and \(\mathbf{\bar{P}} = [\bar{X}, \bar{Y}, \bar{Z}]^T \) be projected into the image points \(\mathbf{p} \) and \(\mathbf{\bar{p}} \), respectively. We know that the corresponding motion field vectors can be written as

\[
\mathbf{u}_s = \mathbf{v}_s^T + \mathbf{v}_o^T
\]

and

\[
\mathbf{u}_r = \mathbf{v}_r^T + \mathbf{v}_o^T
\]

If, at some instant \(t \), the points \(\mathbf{p} \) and \(\mathbf{\bar{p}} \) happen to be coincident (Figure 8.5(a)), we have

\[
\mathbf{p} = \mathbf{\bar{p}} = [x, y]^T,
\]

and the rotational components of the observed motion, \((\mathbf{\omega}_p^T, \mathbf{v}_o^T)\) and \((\mathbf{\omega}_r^T, \mathbf{v}_o^T)\), become

\[
\begin{align*}
\mathbf{\omega}_o^T &= \mathbf{v}_o^T - \omega_x f + \omega_y + \frac{\omega_y x^2}{f} - \frac{\omega_x z}{f} \\
\mathbf{v}_o^T &= \mathbf{v}_o^T + \omega_x f - \omega_y z - \frac{\omega_y x}{f} + \frac{\omega_x y^2}{f}.
\end{align*}
\]

(8.14)
Therefore, by taking the difference between \(\mathbf{v} \) and \(\mathbf{v}' \), the rotational components cancel out, and we obtain

\[
\Delta v_x = v_x' - v_x = (T_x - T_x)' \frac{1}{Z} \frac{1}{2} \frac{1}{Z}
\]

\[
\Delta v_y = v_y' - v_y = (T_y - T_y)' \frac{1}{Z} \frac{1}{2} \frac{1}{Z}
\]

The vector \((\Delta v_x, \Delta v_y) \) can be thought of as the relative motion field. Other factors being equal, \(\Delta v_x \) and \(\Delta v_y \) increase with the separation in depth between \(P \) and \(P' \).

Notice that the ratio between \(\Delta v_y \) and \(\Delta v_x \) can be written as

\[
\frac{\Delta v_y}{\Delta v_x} = \frac{y - y_0}{x - x_0}
\]

with \([x_0, y_0]^T \) image coordinates of \(p_0 \), the vanishing point of the translation direction, (Figure 8.5(b)). Hence, for all possible rotational motions, the vector \((\Delta v_x', \Delta v_y') \) points in the direction of \(p_0 \). Consequently, the dot product between the motion field, \(\mathbf{v} \), and the vector \([y - y_0, -(x - x_0)] \), which is perpendicular to \(p - p_0 \), depends neither on the 3-D structure of the scene nor on the translational component of motion, and can be written as

\[
v_1 = (y - y_0)v_x' - (x - x_0)v_y'
\]

We will make use of this result in section 8.5.2, where we will learn how to compute motion and structure from dense estimates of the motion field.

Be aware that the vanishing point of translation, \(p_0 \), and the point at which \(\mathbf{v} \) vanishes, call it \(q \), are in general different; they coincide only if the motion is purely translational. Any rotational component about an axis not perpendicular to the image plane shifts the position of \(q \), whereas the position of \(p_0 \) remains unchanged, as it is determined by the translational component only. Somewhat descriptively, the flow field in the neighborhood of \(q \) might still look very much like a focus of expansion or constriction (see Figure 8.3).

And here is the customary summary of the main ideas.

Motion Parallax

The relative motion field of two instantaneously coincident points:

1. does not depend on the rotational component of motion
2. points towards (away from) the point \(p_0 \), the vanishing point of the translation direction

\(^1\)Section 8.2.5 makes it clear that this point can be regarded as an instantaneous epipole.
8.3 The Notion of Optical Flow

We now move to the problem of estimating the motion field from image sequences, that is, from the spatial and temporal variations of the image brightness. To do this, we must model the link between brightness variations and motion field, and arrive at a fundamental equation of motion analysis, the image brightness constancy equation. We want also to analyze the power and validity of this equation, that is, understand how much and how well it can help us to estimate the motion field. For simplicity, we will assume that the image brightness is continuous and differentiable as many times as needed in both the spatial and temporal domain.
8.3.1 The Image Brightness Constancy Equation

It is common experience that, under most circumstances, the apparent brightness of moving objects remains constant. We have seen in Chapter 2 that the image irradiance is proportional to the scene radiance in the direction of the optical axis of the camera; if we assume that the proportionality factor is the same across the entire image plane, the constancy of the apparent brightness of the observed scene can be written as the stationarity of the image brightness E over time:

$$\frac{dE}{dt} = 0.$$ \hspace{1cm} (8.15)

or

In (8.15), the image brightness, E, should be regarded as a function of both the spatial coordinates of the image plane, x and y, and of time, that is, $E = E(x, y, t)$. Since x and y are in turn functions of t, the total derivative in (8.15) should not be confused with the partial derivative $\partial E/\partial t$.

Via the chain rule of differentiation, the total temporal derivative reads

$$\frac{dE(x(t), y(t), t)}{dt} = \frac{\partial E}{\partial x} \frac{dx}{dt} + \frac{\partial E}{\partial y} \frac{dy}{dt} + \frac{\partial E}{\partial t} = 0.$$ \hspace{1cm} (8.16)

The partial spatial derivatives of the image brightness are simply the components of the spatial image gradient, ∇E, and the temporal derivatives, $\partial E/\partial t$ and $\partial y/\partial t$, the components of the motion field, v. Using these facts, we can re-write (8.16) as the image brightness constancy equation.

The Image Brightness Constancy Equation

Given the image brightness, $E = E(x, y, t)$, and the motion field, v,

$$\left(\nabla E\right)^T v + E_t = 0.$$ \hspace{1cm} (8.17)

The subscript t denotes partial differentiation with respect to time.

We shall now discuss the relevance and applicability of this equation for the estimation of the motion field.

8.1.2 The Aperture Problem

How much of the motion field can be determined through (8.17)? Only its component in the direction of the spatial image gradient, v_{E}. We can see this analytically by isolating the measurable quantities in (8.17):

$$\frac{E_t}{\nabla E} = \frac{\left(\nabla E\right)^T v}{\|\nabla E\|} = v_{E}.$$ \hspace{1cm} (8.18)

This component is sometimes called the normal component, because the spatial image gradient is normal to the spatial direction along which image intensity remains constant.
Section 8.3 The Notion of Optical Flow 193

Figure 8.7 The aperture problem: the black and gray lines show two positions of the same image line in two consecutive frames. The image velocity perceived in (a) through the small aperture, \(v_s \), is only the component parallel to the image gradient of the true image velocity, \(v \), revealed in (b).

The Aperture Problem

The component of the motion field in the direction orthogonal to the spatial image gradient is not constrained by the image brightness constancy equation.

The aperture problem can be visualized as follows. Imagine to observe a thin, black rectangle moving against a white background through a small aperture. "Small" means that the corners of the rectangle are not visible through the aperture (Figure 8.7(a)); the small aperture simulates the narrow support of a differential method. Clearly, there are many, actually infinite, motions of the rectangle compatible with what you see through the aperture (Figure 8.7(b)); the visual information available is only sufficient to determine the velocity in the direction orthogonal to the visible side of the rectangle; the velocity in the parallel direction cannot be estimated.

Notice that the parallel between (8.17) and Figure 8.7 is not perfect. Equation (8.17) relates the image gradient and the motion field at the same image point, thereby establishing a constraint on an infinitely small spatial support; instead, Figure 8.7 describes a state of affairs over a small but finite spatial region. This immediately suggests that a possible strategy for solving the aperture problem is to look at the spatial and temporal variations of the image brightness over a neighborhood of each point.\(^{10}\)

\(^{10}\) Incidentally, this strategy appears to be adopted by the visual system of primates.
8.3.3 The Validity of the Constancy Equation: Optical Flow

How well does (8.17) estimate the normal component of the motion field? To answer this question, we can look at the difference, Δv, between the true value and the one estimated by the equation. To do this, we must introduce a model of image formation, accounting for the reflectance of the surfaces and the illumination of the scene.

For the purposes of this discussion, we restrict ourselves to a Lambertian surface, S, illuminated by a pointwise light source infinitely far away from the camera (Chapter 2). Therefore, ignoring photometric distortion, we can write the image brightness, E, as

$$E = \rho I \hat{n},$$ \hspace{1cm} (8.19)

where ρ is the surface albedo, I identifies the direction and intensity of illumination, and \hat{n} is the unit normal to S at P.

Let us now compute the total temporal derivative of both sides of (8.19). The only quantity that depends on time on the right-hand side is the normal to the surface. If the surface is moving relative to the camera with translational velocity T and angular velocity ω, the orientation of the normal vector \hat{n} will change according to

$$\frac{d\hat{n}}{dt} = \omega \times \hat{n},$$ \hspace{1cm} (8.20)

where \times indicates vector product. Therefore, taking the total temporal derivative of both sides of (8.19), and using (8.17) and (8.20), we have

$$\nabla E^T \dot{v} + E_t = \rho [I (\omega \times \hat{n})].$$ \hspace{1cm} (8.21)

We can obtain the desired expression for Δv from (8.18) and (8.21):

$$|\Delta v| = \rho \frac{I^T \omega \times \hat{n}}{\|
abla E\|}. $$

We conclude that, even under the simplifying assumption of Lambertian reflectance, the image brightness constancy equation yields the true normal component of the motion field (that is, $|\Delta v|$ is identically 0 for every possible surface) only for (a) purely translational motion, or (b) for any rigid motion such that the illumination direction is parallel to the angular velocity.

Other factors being equal, the difference Δv decreases as the magnitude of the spatial gradient increases; this suggests that points with high spatial image gradient are the locations at which the motion field can be best estimated by the image brightness constancy equation.

In general, $|\Delta v|$ is unlikely to be identically zero, and the apparent motion of the image brightness is almost always different from the motion field. For this reason, to avoid confusion, we call the apparent motion an optical flow, and refer to techniques estimating the motion field from the image brightness constancy equation as optical flow techniques. Here is a summary of similarities and differences between motion field and optical flow.