What is the set of images of an object under all possible lighting conditions?

In answering this question, we'll arrive at a photometric stereo method for reconstructing surface shape w/ unknown lighting.

The Space of Images

- Consider an n-pixel image to be a point in an n-dimensional space, \(\mathbf{x} \in \mathbb{R}^n \).
- Each pixel value is a coordinate of \(\mathbf{x} \).
- Many results will apply to linear transformations of image space (e.g. filtered images)
- Other image representations (e.g. Cayley-Klein spaces, See Koenderink’s “pixel f@king paper”)

Assumptions

For discussion, we assume:
- Lambertian reflectance functions.
- Objects have convex shape.
- Light sources at infinity.
- Orthographic projection.
- Note: many of these can be relaxed....

Lambertian Surface

At image location \((u,v)\), the intensity of a pixel \(x(u,v)\) is:
\[
x(u,v) = [a(u,v)n(u,v)] \cdot s = \mathbf{b}(u,v) \cdot \hat{s}
\]
where:
- \(a(u,v)\) is the albedo of the surface projecting to \((u,v)\).
- \(n(u,v)\) is the direction of the surface normal.
- \(s\) is the light source intensity.
- \(\hat{s}\) is the direction to the light source.

Model for Image Formation

Lambertian Assumption with shadowing:
\[
x = \max(\mathbf{B}s, 0) \quad \mathbf{B} = \begin{bmatrix} -b_1^T \ 0 \ 0 \
\end{bmatrix}
\]
where:
- \(\mathbf{x}\) is an n-pixel image vector
- \(\mathbf{B}\) is a matrix whose rows are unit normals scaled by the albedos
- \(s \in \mathbb{R}^1\) is vector of the light source direction scaled by intensity
The set of images of a Lambertian surface with no shadowing is a subset of 3-D linear subspace.

\[L = \{ x | x = B s, \forall s \in \mathbb{R}^3 \} \]

where \(B \) is an \(n \times 3 \) matrix whose rows are product of the surface normal and Lambertian albedo.

With more than three images, perform least squares estimation of \(B \) using Singular Value Decomposition (SVD).

Rendering Images: \[\sum_i \max(Bs_i, 0) \]

Still Life

Original Images

Basis Images

Set of Images from a Single Light Source

- Let \(L_i \) denote the intersection of \(L \) with an orthant \(i \) of \(\mathbb{R}^n \).
- Let \(P_i(L_i) \) be the projection of \(L_i \) onto a "wall" of the positive orthant given by \(\max(x, 0) \).

Then, the set of images of an object produced by a single light source is:

\[U = \bigcup_{i=0}^{M} P_i(L_i) \]
The image \mathbf{x} produced by multiple light sources is:

$$\mathbf{x} = \sum \text{max}(\mathbf{B} \mathbf{s}_i, 0)$$

where
- \mathbf{x} is an n-pixel image vector.
- \mathbf{B} is a matrix whose rows are unit normals scaled by the albedo.
- \mathbf{s}_i is the direction and strength of the light source i.

The set of images from multiple light sources is:

- With two lights on, resulting image along line segment between single source images: superposition of images, non-negative lighting.
- For all numbers of sources, and strengths, rest is convex hull of \mathbf{U}.

The illumination cone theorem: The set of images of any object in fixed pose, but under all lighting conditions, is a convex cone in the image space. (Belhumeur and Kriegman, IJCV, 98)

Some natural ideas & questions:
- Can the cones of two different objects intersect?
- Can two different objects have the same cone?
- How big is the cone?
- How can cone be used for recognition?

Do ambiguities exist? Yes
- Cone is determined by linear subspace \mathbf{L}
- The columns of \mathbf{B} span \mathbf{L}
- For any $\mathbf{A} \in \text{GL}(3)$, $\mathbf{B}^* = \mathbf{B} \mathbf{A}$ also spans \mathbf{L}.
- For any image of \mathbf{B} produced with light source \mathbf{S}, the same image can be produced by lighting \mathbf{B}^* with $\mathbf{S}^* = \mathbf{A}^\dagger \mathbf{S}$ because $\mathbf{x} = \mathbf{B}^* \mathbf{S}^* = \mathbf{B} \mathbf{A A}^\dagger \mathbf{S} = \mathbf{BS}$.
- When we estimate \mathbf{B} using SVD, the rows are NOT generally normal to albedo.

Do ambiguities exist? Yes
- Cone is determined by linear subspace \mathbf{L}
- The columns of \mathbf{B} span \mathbf{L}
- For any $\mathbf{A} \in \text{GL}(3)$, $\mathbf{B}^* = \mathbf{B} \mathbf{A}$ also spans \mathbf{L}.
- For any image of \mathbf{B} produced with light source \mathbf{S}, the same image can be produced by lighting \mathbf{B}^* with $\mathbf{S}^* = \mathbf{A}^\dagger \mathbf{S}$ because $\mathbf{x} = \mathbf{B}^* \mathbf{S}^* = \mathbf{B} \mathbf{A A}^\dagger \mathbf{S} = \mathbf{BS}$.
- When we estimate \mathbf{B} using SVD, the rows are NOT generally normal to albedo.
Surface Integrability

In general, \(B^* \) does not have a corresponding surface. Linear transformations of the surface normals in general do not produce an integrable normal field.

GBR Transformation

Only Generalized Bas-Relief transformations satisfy the integrability constraint:

\[
A = G^T = \begin{bmatrix}
A & 0 & -\mu \\
A & 0 & -\nu \\
0 & 0 & 1
\end{bmatrix}
\]

Generalized Bas-Relief Transformations

Objects differing by a GBR have the same illumination cone. Without knowledge of light source location, one can only recover surfaces up to GBR transformations.

Uncalibrated photometric stereo

1. Take \(n \) images as input, perform SVD to compute \(B^* \).
2. Find some \(A \) such that \(B^* A \) is close to integrable.
3. Integrate resulting gradient field to obtain height function \(f^*(x,y) \).

Comments:
- \(f^*(x,y) \) differs from \(f(x,y) \) by a GBR.
- Can use specularities to resolve GBR for non-Lambertian surface.

What about cast shadows for nonconvex objects?

GBR Preserves Shadows

Given a surface \(f \) and a GBR transformed surface \(f' \), then for every light source \(s \) which illuminates \(f \) there exists a light source \(s' \) which illuminates \(f' \) such that the attached and cast shadows are identical.

GBR is the only transform that preserves shadows.

[Reubens, Physicorum Libri Sex, 1613]
As far as light and shade are concerned low relief fails both as sculpture and as painting, because the shadows correspond to the low nature of the relief, as for example in the shadows of foreshortened objects, which will not exhibit the depth of those in painting or in sculpture in the round.

Leonardo da Vinci
Treatise on Painting (Kemp)

The Illumination Cone

Thm: The span of the extreme rays of the illumination cone is equal to the number of distinct surface normals — i.e., as high as \(n \).

The number of extreme rays of the cone is \(n(n-1)+2 \)

(Belhumeur and Kriegman, IJCV ’98)

Illumination Cones: Recognition Method

• Distance to cone
• Cost \(O(n e^2) \) where
 • \(n \): # pixels
 • \(e \): # extreme rays
• Distance to subspace

Recent results

• Illumination cone is well capture by nine dimensions for a convex Lambertian surface.
 - Spherical Harmonic representation of lighting & BRDF.
Generating the Illumination Cone

Original (Training) Images

3D linear subspace

Cone - Attached

Surface, \(f(x,y) \)
(albedo textured mapped on surface).

Cone - Cast

[Georghiades, Belhumeur, Kriegman 01]

Predicting Lighting Variation

Single Light Source

Yale Face Database B

64 Lighting Conditions
9 Poses
=> 576 Images per Person

Face Recognition: Test Subsets

Test images divided into 4 subsets depending on illumination.

Increasing extremity in illumination

Geodesic Dome Database - Frontal Pose

[Georghiades, Belhumeur, Kriegman 01]

Face Recognition: Lighting & Pose

1. Union of linear subspaces
 1. Sample the pose space, and for each pose construct illumination cone.
 2. Cone can be approximated by linear subspace (used 11-D)

2. For computational efficiency, project using PCA to 100-D
Illumination Variability Reveals Shape

pose variability in test set: up to 24°

illumination cone face recognition result: pose and lighting

error rate: 1.02% error rate: 3.4%

[georghiades, belhumeur, kriegman 01]

closest sample to test image: examples

test image:

closest match:

frontal 12° 24°

illumination & image set

• lack of illumination invariants
 [chen, jacobs, belhumeur 98]
• set of images of lambertian surface w/o shadowing is 3-D linear subspace
 [moses 93], [nayar, murase 96], [shashua 97]
• empirical evidence that set of images of object is well-approximated by a low-dimensional linear subspace
 [hallinan 94], [epstein, hallinan, yuille 93]
• illumination cones
 [belhumeur, kriegman 98]
• spherical harmonics lighting & images
 [basri, jacobs 01], [ramamoorthi, hantakan 01]
• analytic PCA of image over lighting
 [ramamoorthi 02]

some subsequent work

1. “face recognition under variable lighting using harmonic image exemplars,” zhang, samaras, cvpr03
2. “clustering appearances of objects under varying illumination conditions,” ho, lee, lim, kriegman, cvpr03
3. “low-dimensional representations of shaded surfaces under varying illumination,” nilius, eklundh, cvpr03
4. “using specularities for recognition,” osadchy, jacobs, ramamoorthi, iccv 03