In traditional clustering, there are K clusters C_1, C_2, \ldots, C_K with means m_1, m_2, \ldots, m_K. A least squares error measure can be defined as

$$D = \sum_{k=1}^{K} \sum_{x_i \in C_k} \|x_i - m_k\|^2.$$

which measures how close the data are to their assigned clusters. A least-squares clustering procedure could consider all possible partitions into K clusters and select the one that minimizes D. Since this is computationally infeasible, the popular methods are approximations. One important issue is whether or not K is known in advance. Many algorithms expect K as a parameter from the user. Others attempt to find the best K according to some criterion, such as keeping the variance of each cluster less than a specified value.

Iterative K-Means Clustering The K-means algorithm is a simple, iterative hill-climbing method. It can be expressed as:

Form K-means clusters from a set of n-dimensional vectors.

1. Set i_c (iteration count) to 1.
2. Choose randomly a set of K means $m_1(1), m_2(1), \ldots, m_K(1)$.
3. For each vector x_i compute $D(x_i, m_k(i_c))$ for each $k = 1, \ldots, K$ and assign x_i to the cluster C_i with the nearest mean.
4. Increment i_c by 1 and update the means to get a new set $m_1(i_c), m_2(i_c), \ldots, m_K(i_c)$.
5. Repeat steps 3 and 4 until $C_k(i_c) = C_k(i_c + 1)$ for all k.

Algorithm 10.1 K-Means Clustering.

This algorithm is guaranteed to terminate, but it may not find the global optimum in the least squares sense. Step 2 may be modified to partition the set of vectors into K random clusters and then compute their means. Step 5 may be modified to stop after the percentage of vectors that change clusters in a given iteration is small. Figure 10.4 illustrates the application of the K-means clustering algorithm in RGB space to the original football image of Figure 10.1.

Isodata Clustering Isodata clustering is another iterative algorithm that uses a split-and-merge technique. Again assume that there are K clusters C_1, C_2, \ldots, C_K with means m_1, m_2, \ldots, m_K, and let Σ_k be the covariance matrix of cluster k (as defined next). If the x_i's are vectors of the form

$$x_i = [v_1, v_2, \ldots, v_n]$$