Problem 1: NP-completeness, NP, coNP

Consider the following variant of the satisfiability problem: You are given a boolean formula \(\phi \) in CNF form that contains only positive literals (that is, each literal equals \(x_i \) for some variable, rather than \(\overline{x_i} \)). We will call this form Positive Conjunctive Normal Form (PCNF for brevity) and the corresponding formulas PCNF formulas. For PCNF formulas the satisfiability question is trivial (we can simply set all variables to TRUE and the formula will always be satisfied). Here we are interested in finding satisfying assignments that assign to true the least possible number of variables. The computational problem of finding such “minimal” satisfying assignment is modeled by the following language:

\[
PSAT = \{ (\phi, k) \mid \phi \text{ is a PCNF formula and } \exists \text{ satisfying assignment that sets at most } k \text{ variables to true} \}
\]

(a) Prove that PSAT is NP-Complete. (Remember, this requires showing both that PSAT is in NP, and that any other NP problem reduces to PSAT in polynomial time.)

(b) Let \(\phi \) be a PCNF formula. We define \(M(\phi) \) as the minimum number of variables that need to be set to true in order for \(\phi \) to be satisfiable. More formally \(M(\phi) \) is such that \((\phi, M(\phi)) \in PSAT \) and \((\phi, k) \notin PSAT \) for all \(k < M(\phi) \).

Consider now the Smaller Minimum Positive Satisfying Assignment Problem (SMPSA for brevity)

\[
SMPSA = \{ (\phi_1, \phi_2) \mid \phi_1, \phi_2 \text{ are PCNF formulas and } M(\phi_1) < M(\phi_2) \}
\]

Show that \(SMPSA \in NP \) if and only if \(NP = \text{coNP} \).

[Hint: there are many possible ways to structure a solution to this problem. It is probably a good idea to break it into two parts: show that if \(NP = \text{coNP} \) then \(SMPSA \in NP \), and then show that if \(SMPSA \in NP \) then \(NP = \text{coNP} \). Another thing that you may find useful is showing that \(SMPSA \) is equivalent (e.g., via polynomial time Turing reductions) to some other problem, e.g., what happens if you change the “<” in the definition of \(SMPSA \) with “\(\leq \)” or “=”? Anyway, these hints are mostly intended just to get you started thinking about the problem, and how to approach the question. There are many ways to write down a proof, and you are free to structure your solution any way you like. No matter how you organize your proof, your solution should start with a clear outline of how the rest of the proof is structured.]
Problem 2: SPACE Complexity

Let LINSPACE be the class of all problems that can be decided by a deterministic TM in linear space (more specifically LINSPACE=∪c SPACE(c·n)). The goal of this problem is to show that LINSPACE is different from NP.

1. Prove that NP is closed under polynomial time mapping reductions (namely if A ≤p B and B ∈ NP then A ∈ NP).

2. Using the padding technique, demonstrate that there exist two languages L1, L2 such that
 (a) L1 /∈ LINSPACE,
 (b) L2 ∈ LINSPACE, and
 (c) L1 ≤p L2.

3. Conclude that LINSPACE /≠ NP, using the results proved in (1) and (2).

 [Hint: The core of this problem is solving part (2). Questions (1) and (2) are independent, i.e., you can work on them separately, and in any order. When working on (2) recall that the space complexity is always computed as a function of the size of the input instance. Use the space hierarchy theorem to construct L1. Question (3) depends on both (1) and (2), but you can work on it independently assuming (1) and (2) are given.]