Lecture 5

Multithreaded iterative stencil methods
Caches: coherence and consistency
Announcements
Iterative mesh methods
Mesh based methods

- Many physical problems are simulated on a uniform \textit{mesh} in 1, 2 or 3 dimensions
- \textit{Field variables} defined on a discrete set of points
- A \textit{mapping} from ordered pairs to \textit{physical observables} like temperature and pressure
- One application: differential equations
Differential equations

- A **differential equation** is a set of equations involving derivatives of a function (or functions), and specifies a solution to be determined under certain constraints
- Constraints often specify **boundary conditions** or **initial values** that the solution must satisfy
- When the functions have multiple variables we have a **Partial Differential Equation** (PDE)
 \[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \] within a square box, \(x, y \in [0,1] \)
 \[u(x,y) = \sin(x) \ast \sin(y) \] on \(\partial \Omega \), perimeter of the box
- When the functions have a single variable we have an **Ordinary Differential Equation** (ODE)
 \[-u''(x) = f(x), \; x \in [0,1], \; u(0) = a, \; u(1) = b\]
Solving an ODE with a discrete approximation

• Solve the ODE
 \[-u''(x) = f(x), \; x \in [0,1]\]

• Define \(u_i = u(i \times h) \) at points
 \[x = i \times h, \quad h = 1/(N-1) \]

• Approximate the derivatives
 \[u'' \approx (u(x+h) - 2u(x) + u(x-h))/h^2 \]

• Obtain the system of equations
 \[-(u_{i-1} - 2u_i + u_{i+1})/h^2 = f_i, \quad i \in 1..n-2\]
Iterative solution

• It can be shown that the following \textit{Gauss-Seidel} algorithm will arrive at the solution …

• …. assuming an initial guess for the u_i

Repeat until the result is satisfactory
for $i = 1 : N-1$

\begin{align*}
 u_i &= \frac{(u_{i+1} + u_{i-1} + h^2 f_i)}{2}
\end{align*}

end for

end Repeat
Convergence

• Convergence is slow
• We reach the desired precision in $O(N^2)$ iterations
• The “better” the initial guess, the sooner we converge
Estimating the error

• How do we know when the answer is “good enough?”
 • The computed solution has reached a reasonable approximation to the exact solution
 • We validate the computed solution in the field, i.e. wet lab experimentation
• But we often don’t know the exact solution, and must estimate the error
• We can estimate the error by taking the difference between the present and the previous iteration, and computing the maximum change over all points
• There are other measures, too
Parallel implementation

- We partition the data into intervals, assigning each to a unique thread
- Each thread sweeps over a reduced problem, using as boundary conditions values updated by other threads

\[P0 \quad P1 \quad P2 \quad P3 \]
Dependences

• Our attempt to parallelize the algorithm fails: there are loop carried dependences
• The value of $u[i]$ computed in iteration i depends on $u[i]$ computed in iteration $i-1$

for $i = 1 : N-1$

\[u[i] = (u[i-1]+u[i+1] +h*h*f[i])/2 \]
end for
Jacobi’s Method

- Renaming the LHS of the assignment eliminates the dependences
- Two arrays u and u_{new}
- This is *Jacobi’s method*

```plaintext
for i = 1 : N-1
    \[ u_{\text{new}}[i] = \frac{(u[i-1] + u[i+1] + h^2 f[i])}{2} \]
    error = Max(error, absval($u_{\text{new}}[i] - u[i]$))
end for
Swap u and $u_{\text{new}}$
```
Odd/Even or Red/Black ordering

• Another way to order the computation is to number the points as even and odd
• We alternate between sweeping over red and black points
• This algorithm parallelizes since there are no loop carried dependences
• All the red points are decoupled
• Have we sacrificed some aspect of performance?

\[u_{i-1} \quad u_i \quad u_{i+1} \]
Performance

• In early computer designs, arithmetic was much more expensive than memory accesses
• So the running time could be expressed in terms of “flops” = “floating point operations”
• But today, memory accesses are a more realistic measure
 – Gauss-Seidel?
 – Jacobi’s
 – Odd/Even?

\[u_{i-1} \quad u_i \quad u_{i+1} \]
Tradeoffs

• We can now parallelize the algorithm, since we have eliminated the loop carried dependencies
• Jacobi’s method reduced the convergence rate by about a factor of two
• Odd/Even ordering doubles the number of cache misses
• Doubles the amount of work needed to solve the problem
• This kind of tradeoff is common
• Which algorithm should be used in the “fastest serial” implementation?
The odd/even algorithm

for i = 1 : N-1 by 2
 \[u[i] = \frac{(u[i-1]+u[i+1]+h^2f[i])}{2} \]
end for

for i = 2 : N-1 by 2
 \[u[i] = \frac{(u[i-1]+u[i+1]+h^2f[i])}{2} \]
end for
Convergence check

• Each thread computes the error for its assigned part of the problem
• We need a global error so that we compute a result that is consistent with the single processor implementation
• We form a global sum of the local contributions
Stencils and molecules

• We call the numerical operator that sweeps over the solution mesh a **stencil operator**

• In n dimensions, we have functions of n variables

• In 2D:

\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \Delta u = f(x,y) \quad \text{within a square box, } x,y \in [0,1]
\]

\[
u(x,y) = \sin(x) \times \sin(y) \quad \text{on } \partial \Omega, \quad \text{perimeter of the box}
\]

Define \(u_{i,j} = u(x_i, y_j) \) at points \(x_i = i \times h, \quad y_j = j \times h, \quad h = 1/(N-1) \)

• Approximate the derivatives

\[
u_{xx} \approx (u(x_{i+1}, y_j) + u(x_{i-1}, y_j) + u(x_i, y_{j+1}) + u(x_i, y_{j-1}) - 4u(x_i, y_j))/h^2
\]
Jacobi’s Method in 2D

• We call the numerical operator that sweeps over the solution mesh a **stencil operator**

• We approximate the derivatives

\[u_{xx} \approx (u(x_{i+1},y_j) + u(x_{i-1},y_j) + u(x_i,y_{j+1}) + u(x_i,y_{j-1}) - 4u(x_i,y_j)/h^2 \]

• The update formula

for \((i,j)\) in \(0:N-1 \times 0:N-1\)

\[u'[i,j] = (u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i,j+1] - h^2f[i,j])/4 \]
Partitioning

- Splits up the data over threads
- Different partitionings according to the processor geometry

For P processors geometries are of the form $p_0 \times p_1$, where $P = p_0 \cdot p_1$

- For $P=4$, 3 possible geometries

\[
\begin{array}{c|c|c|c|c|}
\hline
0 & 1 & 2 & 3 \\
\hline
\end{array}
\quad
\begin{array}{c|c}
0 & \\
\hline
1 & \\
\hline
2 & \\
\hline
3 & \\
\hline
\end{array}
\quad
\begin{array}{c|c}
0 & 1 \\
\hline
2 & 3 \\
\hline
\end{array}
\]
Data access

- Off processor values surround each local subproblem
- Non-contiguous data
- Inefficient to access values on certain faces/edges
Multithreaded Solve()

Local mymin = 1 + ($TID * n/$nprocs), mymax = mymin + n/$nprocs -1;

Global error, u[:,:], u\text{new}[:,:];
done = FALSE;

\textbf{while} (!done) \textbf{do}
\hspace{1em} myerr = error = 0;
\hspace{2em} \textbf{Barrier()}
\hspace{2em} \textbf{for} i = mymin \textbf{to} mymax \textbf{do}
\hspace{3em} \textbf{for} j = 1 \textbf{to} n \textbf{do}
\hspace{4em} u\text{new}[i,j] = …
\hspace{4em} myerr = \text{Max}(myerr, \text{absval}(u\text{new}[i,j]-u[i,j]))
\hspace{3em} \textbf{end for}
\hspace{2em} \textbf{end for}
\hspace{1em} \textbf{Critical Section}
\hspace{2em} \{\text{error} = \text{Max}(error,myerr); \}
\hspace{2em} \textbf{Barrier()}
\hspace{2em} \textbf{if} (error / (n*n) < \text{Tolerance}) done = TRUE;
\hspace{2em} u[mymin:mymax,:) = u\text{new}[mymin:mymax,:]
\hspace{2em} \textbf{Barrier()}
\hspace{1em} \textbf{end while}

- Don’t read locations updated by other processes in the previous iteration until they have been produced (true dependence)
- Don’t overwrite values used by other processes in the current iteration until they have been consumed (anti-dependence)
Caches
Coherency,
Consistency,
False Sharing
Cache Coherence

• A central design issue in shared memory architectures
• Processors may read and write the same cached memory location
• If one processor writes to the location, all others must eventually see the write

```
X:=1    Memory
```
Cache Coherence

- P1 & P2 load X from main memory into cache
- P1 stores 2 into X
- The memory system doesn’t have a coherent value for X
Cache Coherence Protocols

• Ensure that all processors *eventually* see the same value

• Two policies
 – Update-on-write (implies a write-through cache)
 – Invalidate-on-write
SMP architectures

- Employ a *snooping protocol* to ensure coherence
- Processors listen to bus activity

Parallel Computer Architecture, Culler, Singh, Gupta
Memory consistency and correctness

- Cache coherence tells us that memory will eventually be consistent
- The memory consistency policy tells us when this will happen
- Even if memory is consistent, changes don’t propagate instantaneously
- These give rise to correctness issues involving program behavior
Memory consistency

• A memory system is consistent if the following 3 conditions hold
 – Program order
 – Definition of a coherent view of memory
 – Serialization of writes
Program order

- If a processor writes and then reads the same location X, and there are no other intervening writes by other processors to X, then the read will always return the value previously written.
Definition of a coherent view of memory

- If a processor P reads from location X that was previously written by a processor Q, then the read will return the value previously written, if a sufficient amount of time has elapsed between the read and the write.
Serialization of writes

• If two processors write to the same location X, then other processors reading X will observe the same the sequence of values in the order written

• If 10 and then 20 is written into X, then no processor can read 20 and then 10
Memory consistency model

• The memory consistency model determines when a written value will be seen by a reader

• **Sequential Consistency** maintains a linear execution on a parallel architecture that is consistent with the sequential execution of some interleaved arrangement of the separate concurrent instruction streams

• Expensive to implement

• **Relaxed consistency**
 – Enforce consistency only at well defined times
 – Useful in handling false sharing
False sharing

• Consider two processors that write to different locations mapping to different parts of the same cache line
False sharing

• P0 writes a location
• Assuming we have a write-through cache, memory is updated
False sharing

- P1 reads the location written by P0
- P1 then writes a different location in the same block of memory
False sharing

- P1’s write updates main memory
- Snooping protocol invalidates the corresponding block in P0’s cache
False sharing

Successive writes by P0 and P1 cause the processors to uselessly invalidate one another’s cache
Eliminating false sharing

• Cleanly separate locations updated by different processors
 – Manually assign scalars to a preallocated region of memory using pointers
 – With a block partitioned array, we want partition boundaries to coincide with a cache line boundary

• Compilers can perform some of these optimizations
How do cache misses arise?

• The 3 C’s
• Cold Start
• Capacity
• Conflict
False sharing in higher dimension arrays

• Compare with distributed memory solution
Reducing conflict misses

- Pad the array with unused cells to change the memory access patterns
- Rivera & Tseng [Sigplan, 1998]
- Any other ways?