Introduction and Motivation

In this lecture we ask: Are all languages regular? The answer is negative. The simplest example is the language

\[B = \{a^n b^n \mid n \geq 0\} \]

Try to think about this language.

Note: This is not a proof!
Perhaps a DFA recognizing \(B \) exists, but we are not clever enough to find it?
The Pumping Lemma is the formal tool we use to prove that the language B (as well as many other languages) is not regular.

Consider the following NFA, denoted by N:

It accepts all words of the form $(0 \cup 1)(01)^*$.

What is Pumping?

Consider now the word $110 \in L(N)$.

Pumping means that the word 110 can be divided into two parts: 1 and 10, such that for any $i \geq 0$, the word $1(10)^i \in L(n)$.

We say that the word 110 can be pumped. For $i = 0$ this is called down pumping. For $i > 1$ this is called up pumping.

Note: the formal definition is a little more complex than this one.

A more general description would be:

A word $w \in L$, can be pumped if $w = xy$ and for each $i \geq 0$, it holds that $xy^i \in L$.
The Pumping Lemma

Let A be a regular language. There exists a number p such that for every $w \in A$, if $|w| \geq p$ then w may be divided into three parts $w = xyz$, satisfying:

1. for each $i \geq 0$, it holds that $xy^iz \in A$.
2. $|y| > 0$.
3. $|xy| \leq p$.

Note: Without req. 2 the Theorem is trivial.

Proof of the Pumping Lemma

Let D be a DFA recognizing A and let p be the number of states of D. If A has no words whose length is at least p, the theorem holds vacuously. Let $w \in A$ be an arbitrary word such that $|w| \geq p$. Denote the symbols of w by $w = w_0, w_2, ..., w_m$ where $m = |w| \geq p$.

Assume that $q_0, q_1, ..., q_p, ..., q_m$ is the sequence of states that D goes through while computing with input w. For each k, $0 \leq k < m$, $\delta(q_k, w_k) = q_{k+1}$. Since $w \in A$, $q_m \in F_D$.

Since the sequence $q_0, q_1, ..., q_p$ contains $p + 1$ states and since the number of states of D is p, that there exist two indices $0 \leq i < j \leq p$, such that $q_j = q_i$.

Proof of the Pumping Lemma

Denote $x = w_i w_2 ... w_{i-1}$, $y = w_i w_{i+1} ... w_{j-1}$ and $z = w_j w_{j+1} ... w_m$. Note: Under this definition $|y| > 0$ and $|xy| \leq p$.

By this definition, the computation of D on $x = w_i w_2 ... w_{i-1}$ starting from q_0, ends at q_i.

By this definition, the computation of D on $z = w_j w_{j+1} ... w_m$, starting from q_j, ends at q_m which is an accepting state.
Proof of the Pumping Lemma

The computation of D on $y = w_i w_{i+1} \ldots w_{j-1}$
starting from q_i, ends at q_j. Since $q_i = q_j$, this
computation starts and ends at the same
state.

Since it is a circular computation, it can repeat
itself k times for any $k \geq 0$.

In other words: for each $i \geq 0$, $xy^iz \in A$.

Q.E.D.