Introduction

The rest of the course deals with an important tool in Computability and Complexity theories, namely: Reductions.

The reduction technique enables us to use the undecidability of A_{TM} to prove many other languages undecidable.

Introduction

A reduction always involves two computational problems. Generally speaking, the idea is to show that a solution for some problem A induces a solution for problem B. If we know that B does not have a solution, we may deduce that A is also insolvable. In this case we say that B is reducible to A.

Introduction

In the context of undecidability: If we want to prove that a certain language L is undecidable. We assume by way of contradiction that L is decidable, and show that a decider for L, can be used to devise a decider for A_{TM}. Since A_{TM} is undecidable, so is the language L.
Introduction

Using a decider for L to construct a decider for A_{TM}, is called **reducing L to A_{TM}**.

Note: Once we prove that a certain language L is undecidable, we can prove that some other language, say L', is undecidable, by reducing L' to L.

Schematic of a Reduction

1. We know that A is undecidable.
2. We want to prove B is undecidable.
3. We assume that B is decidable and use this assumption to prove that A is decidable.
4. We conclude that B is undecidable.

Note: The reduction is **from A to B**.

Demonstration

1. We know that A is undecidable.
 The only undecidable language we know, so far, is A_{TM} whose undecidability was proven directly. (In the discussion you also proved directly that $HALT_{TM}$ is undecidable). So we pick A_{TM} to play the role of A.
2. We want to prove B is undecidable.

Demonstration

2. We want to prove B is undecidable.
 We pick $HALT_{TM}$ to play the role of B that is:
 We want to prove that $HALT_{TM}$ is undecidable.
3. We assume that B is decidable and use this assumption to prove that A is decidable.
Demonstration

3. We assume that B is decidable and use this assumption to prove that A is decidable. In the following slides we assume (towards a demonstration) that $HALT_{TM}$ is decidable and use this assumption to prove that A_{TM} is decidable.

4. We conclude that B is undecidable.

The “Real” Halting Problem

Consider

$$HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that halts on } w \}$$

Theorem

$HALT_{TM}$ is undecidable.

Proof

By reducing $HALT_{TM}$ to A_{TM}.

Discussion

Assume by way of contradiction that $HALT_{TM}$ is decidable.

Recall that a decidable set has a **decider** R: A TM that halts on every input and either accepts or rejects, but *never loops!*. We will use the assumed decider of $HALT_{TM}$ to devise a decider for A_{TM}.

Discussion

Recall the definition of A_{TM}:

$$A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that accepts } w \}$$

Why is it impossible to decide A_{TM}?

Because as long as M runs, we cannot determine whether it will eventually halt.

Well, now we can, using the **decider** R for $HALT_{TM}$.
Proof

Assume by way of contradiction that \(\text{HALT}_{TM} \) is decidable and let \(R \) be a TM deciding it. In the next slide we present TM \(S \) that uses \(R \) as a subroutine and decides \(A_{TM} \). Since \(A_{TM} \) is undecidable this constitutes a contradiction, so \(R \) does not exist.

Proof (cont.)

\[S = \text{"On input } \langle M, w \rangle \text{ where } M \text{ is a TM:} \]

1. Run \(R \) on input \(\langle M, w \rangle \) until it halts.
2. If \(R \) rejects, (i.e. \(M \) loops on \(w \)) - reject.

(At this stage we know that \(R \) accepts, and we conclude that \(M \) halts on input \(w \).)

3. Simulate \(M \) on \(w \) until it halts.
4. If \(M \) accepts - accept, otherwise - reject. “

Another Example

In the discussion, you saw how Diagonalization can be used to prove that \(\text{HALT}_{TM} \) is not decidable. We can use this result to prove by reduction that \(A_{TM} \) is not decidable.

Note: Since we already know that both \(A_{TM} \) and \(\text{HALT}_{TM} \) are undecidable, this new proof does not add any new information. We bring it here only for the sake of demonstration.
Demonstration

1. We know that A is undecidable.
 Now we pick $HALT_{TM}$ to play the role of A.
2. We want to prove B is undecidable.
 We pick A_{TM} to play the role of B, that is: We want to prove that A_{TM} is undecidable.
3. We assume that B is decidable and use this assumption to prove that A is decidable.
4. We conclude that B is undecidable.

Discussion

Let R be a decider for A_{TM}. Given an input for $\langle M, w \rangle$, R can be run with this input:

- If R accepts, it means that $\langle M, w \rangle \in A_{TM}$.
- This means that M accepts on input w. In particular, M stops on input w. Therefore, a decider for $HALT_{TM}$ must accept $\langle M, w \rangle$ too.

If however R rejects on input $\langle M, w \rangle$, a decider for $HALT_{TM}$ cannot safely reject: M may be halting on w to reject it. So if M rejects w, a decider for $HALT_{TM}$ must accept $\langle M, w \rangle$.
Discussion

How can we use our decider for A_{TM}?

The answer here is more difficult. The new decider should first modify the input TM, M, so the modified TM, M_1, accepts, whenever TM M halts.

Since M is a part of the input, the modification must be a part of the computation.

Faithful to our principal “If it ain’t broken don’t fix it”, the modified TM keeps M as a subroutine, and the idea is quite simple:

Let q_{accept} and q_{reject} be the accepting and rejecting states of TM M, respectively. In the modified TM, M_1, q_{accept} and q_{reject} are kept as ordinary states.

We continue the modification of M by adding a new accepting state nq_{accept}. Then we add two new transitions: A transition from q_{accept} to nq_{accept}, and another transition from q_{reject} to nq_{accept}.

This completes the description of M_1. It is not hard to verify that M_1 accepts iff M halts.
The final description of a decider S for A_{TM} is:

$S = \text{"On input} \langle M, w \rangle \text{ where } M \text{ is a TM:}
1. \text{Modify } M \text{ as described to get } M_1.$
2. \text{Run } R, \text{ the decider of } HALT_{TM} \text{ with input } \langle M_1, w \rangle.$
3. \text{If } R \text{ accepts - accept, otherwise - reject."}''

Discussion

It should be noted that modifying TM M to get M_1, is part of TM S, the new decider for $HALT_{TM}$, and can be carried out by it.

It is not hard to see that S decides $HALT_{TM}$. Since $HALT_{TM}$ is undecidable, we conclude that A_{TM} is undecidable too.

The TM Emptiness Problem

We continue to demonstrate reductions by showing that the language E_{TM}, defined by

$E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM And } L(M) = \phi \}$

is undecidable.

Theorem

E_{TM} is undecidable.

Proof Outline

The proof is by reduction from A_{TM}:

1. We know that A_{TM} is undecidable.
2. We want to prove E_{TM} is undecidable.
3. We assume toward a contradiction that E_{TM} is decidable and devise a decider for A_{TM}.
4. We conclude that E_{TM} is undecidable.
Proof

Assume by way of contradiction that \(E_{TM} \) is decidable and let \(R \) be a TM deciding it. In the next slides we devise TM \(S \) that uses \(R \) as a subroutine and decides \(A_{TM} \).

Proof

Given an instance for \(A_{TM}, \langle M, w \rangle \), we may try to run \(R \) on this instance. If \(R \) accepts, we know that \(L(M) = \phi \). In particular, \(M \) does not accept \(w \) so a decider for \(A_{TM} \) must reject \(\langle M, w \rangle \).

Description of \(M_1 \)

We start with a TM satisfying \(L(M_1) = L(M) \).

\[
\begin{array}{c}
M_1 \\
\hspace{1cm} nq_{accept} \\
\hspace{2cm} nq_{reject} \\
\end{array}
\]

\[
\begin{array}{c}
M \\
\hspace{1cm} q_{accept} \\
\hspace{2cm} q_{reject} \\
\end{array}
\]

\[
\begin{array}{c}
q_{start} \\
\hspace{1cm} nq_{start} \\
\end{array}
\]

What happens if \(R \) rejects? The only conclusion we can draw is that \(L(M) \neq \phi \). What we need to know though is whether \(w \in L(M) \).

In order to use our decider \(R \) for \(E_{TM} \), we once again modify the input machine \(M \) to obtain TM \(M_1 \):
Description of M_1

Now we add a filter to divert all inputs but w.

$$L(M_1) = \begin{cases} \{w\} & \text{if } M \text{ accepts } w \\ \emptyset & \text{if } M \text{ rejects } w \end{cases}$$

Proof

TM M_1 has a filter that rejects all inputs excepts w, so the only input reaching M, is w.

Therefore, M_1 satisfies:

$$L(M_1) = \begin{cases} \{w\} & \text{if } M \text{ accepts } w \\ \emptyset & \text{if } M \text{ rejects } w \end{cases}$$

Proof

Here is a formal description of M_1:

$M_1 =$ “On input x:

1. If $x \neq w$ - reject.
2. If $x = w$ - run M on w and accept if M accepts.”

Note: M accepts w if and only if $L(M_1) \neq \emptyset$.

Proof

This way, if R accepts, S “can be sure” that $w \in L(M)$ and accept. Note that S gets the pair $\langle M, w \rangle$ as input, thus before S runs R, it should compute an encoding $\langle M_1 \rangle$ of M_1. This encoding is not too hard to compute using S's input $\langle M, w \rangle$.

[Diagram of M_1 and M with transition states and arrow connections.]

[Formal description of $L(M_1)$ and its proof.]

[Notes on M accepting w if and only if $L(M_1) \neq \emptyset$.]

[Additional notes on encoding and computation.]
Proof

S=“On input \(\langle M, w \rangle \) where \(M \) is a TM:
1. Compute an encoding \(\langle M_1 \rangle \) of TM \(M_1 \).
2. Run \(R \) on input \(\langle M_1 \rangle \).
3. If \(R \) rejects - accept, otherwise - reject.

Recall that \(R \) is a decider for \(E_{TM} \). If \(R \) rejects the modified machine \(M_1, L(M_1) \neq \phi \), hence by the specification of \(M_1, w \in L(M) \), and a decider for \(A_{TM} \) must accept \(\langle M, w \rangle \).

If however \(R \) accepts, it means that \(L(M_1) = \phi \), hence \(w \notin L(M) \), and \(S \) must reject \(\langle M, w \rangle \).

QED