1. Experimenting with AdaBoost.
 - Use `generate_data_1.m` with \(n = 1000 \) to create a synthetic training and testing set.
 - Implement Discrete AdaBoost using a weak learner of your choice, and demonstrate it on the above synthetic data using 60 boosting iterations.
 - As a function of the number of iterations, plot the training error, the testing error, and the upper bound on the empirical error.

2. Suppose you and your homework partner obtain a dataset \(x^i \in \mathbb{R}^d, i = 1, \ldots, n \), from which you assemble a data matrix \(X = [x^1, \ldots, x^n] \in \mathbb{R}^{d \times n} \) and compute the inner product matrix \(Q = X^\top X \in \mathbb{R}^{n \times n} \). After you compute \(Q \), you realize you wanted to center the data before computing the inner products, i.e., to use \(x^i - \mu \) in place of \(x^i \), where \(\mu = \frac{1}{n} \sum_{i=1}^{n} x^i \).
 Unfortunately, you deleted the dataset.
 Show your partner that hope is not lost, since \(Q' \), the inner product matrix for the centered data, can be obtained from \(Q \) via the expression \(Q' = HQH \) with \(H = I - \frac{1}{n} 1_n 1_n^\top \), where \(1_n \) denotes a column vector of \(n \) ones.

3. Kernel PCA Experiment on Toy Data.
 (a) Implement Kernel PCA using a Gaussian kernel.
 (b) Reproduce the result in Fig. 4 of Schölkopf et al. (1999).