Point Matching as a Classification Problem

(1) Lepetit, Pilet and Fua. *Point Matching as a Classification Problem.*

Presenter: Boris Babenko
CSE 252C

Point Matching – Why?

- Many computer vision problems such as tracking, pose estimation, and recognition, require the knowledge correspondences.
- Local feature matching (as opposed to global recognition via PCA, AdaBoost, etc) has been shown to be more robust with view point, scale and illumination changes, and occlusion.
- Getting correspondences is a very difficult problem.
Point Matching – How?

- **Point detection**: finds points or patches in the image that have saliency (“interest” points).
- **Point description**: assigns a feature vector to each point

- At run time, the NNs of a point in one image are found in another image

Example - NN

![Diagram showing point matching with distances]
Point Matching – How?

- There are many existing point detection and description algorithms.
- Some detection algorithms return not only the location of the points, but also their scale and orientation (e.g. SIFT).
- Lepetit et al. assume point locations are given (they use Harris).

Point Matching as Classification

- Instead of computing feature vectors for the points, and finding the NNs, turn point matching into a classification problem.
- Each point in the “training” image is a class.
Let’s say a “training image” is given.

First detect the points (Harris):

Consider each point as a class
Now a novel image is presented. We detect a point in this image, and we want to assign it a label $y = \{-1, 1, 2, 3, 4, 5\}$.
Training

- **Problem**: in our training data there is only one instance of each class (if there is one training image).
- **Solution**: synthesize more training data.
 - Planar objects: apply random homographies
 - 3D objects: create 3D model by hand, and use texture mapping to synthesize random views of the object

Example - planar object

\[X_2 = Hx_1 \]

Note: patches are a constant 32 x 32 pixels
Training

- Example - planar object

![Image of original and synthesized planar object]

Training

- Example - 3D object

![Image of original and synthesized 3D object]
Training

- **Robustness to localization error:** while synthesizing more views of the patch, the location of the patch is jittered by a few pixels so that the final classifier is robust to detection errors.

- **Invariance to illumination changes:**
 - Paper 1: each patch is normalized so that max and min values are the same for all patches.
 - Paper 2: the features themselves are invariant to illumination changes.
The Classifier

- This is where the two papers differ.

Randomized Trees

- Used successfully in shape classification

Joint Induction of Shape Features and Tree Classifiers
Yali Amit, Donald Geman, and Kenneth Wilder
Randomized Trees

- A decision tree. Each node asks a question of the form: “Is pixel \((x_1, y_1)\) brighter than pixel \((x_2, y_2)\)?”

- At the leaves:

```
Class: 1 2 3 4 5
# of patches in the training data
```

```
1 2 3 4 5
```
Randomized Trees

How to build them?
- Optimal: recursively pick the feature that has the highest expected information gain.
- Easy/Fast: pick the feature for each node randomly

With orientation normalization
Thick line: entropy optimization; Thin line: random
Randomized Trees

Features

\[C_2(m_1, m_2) = \begin{cases}
 \text{if } L_\sigma(p, m_1) \leq L_\sigma(p, m_2) & \text{go to left child} \\
 \text{otherwise} & \text{go to right child}
\end{cases}
\]

\[C_4(m_1, m_2, m_3, m_4) = \begin{cases}
 \text{if } L_\sigma(p, m_1) - L_\sigma(p, m_2) \leq L_\sigma(p, m_3) - L_\sigma(p, m_4) & \text{go to left child;}
 \\
 \text{otherwise} & \text{go to right child.}
\end{cases}
\]

\[C_h(u_1, v_1, o_1, u_2, v_2, o_2) = \begin{cases}
 \text{if } \text{Bin}(u_1, v_1, o_1) \leq \text{Bin}(u_2, v_2, o_2) & \text{go to left child;}
 \\
 \text{otherwise} & \text{go to right child.}
\end{cases}
\]

Randomized Trees

Features

<table>
<thead>
<tr>
<th></th>
<th>(C_2)</th>
<th>(C_4)</th>
<th>(C_h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title set</td>
<td>depth 10</td>
<td>60.7%</td>
<td>57.7%</td>
</tr>
<tr>
<td></td>
<td>depth 12</td>
<td>69.2%</td>
<td>65.1%</td>
</tr>
<tr>
<td></td>
<td>depth 15</td>
<td>77.0%</td>
<td>73.7%</td>
</tr>
<tr>
<td>Eyes set</td>
<td>depth 10</td>
<td>72.7%</td>
<td>70.0%</td>
</tr>
<tr>
<td></td>
<td>depth 12</td>
<td>78.6%</td>
<td>76.1%</td>
</tr>
<tr>
<td></td>
<td>depth 15</td>
<td>84.7%</td>
<td>81.4%</td>
</tr>
</tbody>
</table>
Why this method is fast

- Computation is pushed into the training stage, which is offline.
- At run time, feature vectors need not be computed for each patch in the novel image, as they do in SIFT, etc.
- How fast? Pose recovery in 200 ms on a 3 GHz machine.
- SIFT took 1 second on the same machine.

Results

- In general, the method “usually gives a little fewer matches, and has a little higher outlier rate” than SIFT.
- This is enough for RANSAC to do its job, and it’s faster!
Results - planar object

Lepetit et al. VS Lowe’s SIFT

Lowe’s SIFT VS Lepetit et al.
Results – planar object

Results – 3D object

training

test
Results - 3D object

Questions?