Modular Multiplication Without Trial Division

Peter L. Montgomery

Stable URL: http://links.jstor.org/sici?sici=0025-5718%28198504%2944%3A170%3C519%3AMMWTD%3E2.0.CO%3B2-4

Mathematics of Computation is currently published by American Mathematical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ams.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.
Modular Multiplication Without Trial Division

By Peter L. Montgomery

Abstract. Let \(N > 1 \). We present a method for multiplying two integers (called \(N \)-residues) modulo \(N \) while avoiding division by \(N \). \(N \)-residues are represented in a nonstandard way, so this method is useful only if several computations are done modulo one \(N \). The addition and subtraction algorithms are unchanged.

1. Description. Some algorithms [1], [2], [4], [5] require extensive modular arithmetic. We propose a representation of residue classes so as to speed modular multiplication without affecting the modular addition and subtraction algorithms.

Other recent algorithms for modular arithmetic appear in [3], [6].

Fix \(N > 1 \). Define an \(N \)-residue to be a residue class modulo \(N \). Select a radix \(R \) coprime to \(N \) (possibly the machine word size or a power thereof) such that \(R > N \) and such that computations modulo \(R \) are inexpensive to process. Let \(R^{-1} \) and \(N' \) be integers satisfying \(0 < R^{-1} < N \) and \(0 < N' < R \) and \(RR^{-1} - NN' = 1 \).

For \(0 \leq i < N \), let \(i \) represent the residue class containing \(iR^{-1} \mod N \). This is a complete residue system. The rationale behind this selection is our ability to quickly compute \(TR^{-1} \mod N \) from \(T \) if \(0 \leq T < RN \), as shown in Algorithm REDC:

```plaintext
function REDC(T)
    m ← (T mod R)N' mod R [so 0 ≤ m < R]
    t ← (T + mN)/R
    if t ≥ N then return t − N else return t
```

To validate REDC, observe \(mN \equiv TN'N \equiv -T \mod R \), so \(t \) is an integer. Also, \(tR \equiv T \mod N \) so \(t \equiv TR^{-1} \mod N \). Thirdly, \(0 \leq T + mN < RN + RN \), so \(0 \leq t < 2N \).

If \(R \) and \(N \) are large, then \(T + mN \) may exceed the largest double-precision value. One can circumvent this by adjusting \(m \) so \(-R < m \leq 0 \).

Given two numbers \(x \) and \(y \) between 0 and \(N - 1 \) inclusive, let \(z = REDC(xy) \). Then \(z \equiv (xy)R^{-1} \mod N \), so \((xR^{-1})(yR^{-1}) \equiv zR^{-1} \mod N \). Also, \(0 \leq z < N \), so \(z \) is the product of \(x \) and \(y \) in this representation.

Other algorithms for operating on \(N \)-residues in this representation can be derived from the algorithms normally used. The addition algorithm is unchanged, since \(xR^{-1} + yR^{-1} \equiv zR^{-1} \mod N \) if and only if \(x + y \equiv z \mod N \). Also unchanged are...
the algorithms for subtraction, negation, equality/inequality test, multiplication by
an integer, and greatest common divisor with \(N \).

To convert an integer \(x \) to an \(N \)-residue, compute \(xR \mod N \). Equivalently,
compute \(\text{REDC}((x \mod N)(R^2 \mod N)) \). Constants and inputs should be converted
once, at the start of an algorithm. To convert an \(N \)-residue to an integer, pad it with
leading zeros and apply Algorithm \(\text{REDC} \) (thereby multiplying it by \(R^{-1} \mod N \)).

To invert an \(N \)-residue, observe \((xR^{-1})^{-1} \equiv zR^{-1} \mod N \) if and only if \(z \equiv R^2x^{-1} \mod N \). For modular division, observe \((xR^{-1})(yR^{-1})^{-1} \equiv zR^{-1} \mod N \) if and only if \(z \equiv x(\text{REDC}(y))^{-1} \mod N \).

The Jacobi symbol algorithm needs an extra negation if \((R/N) = -1 \), since
\((xR^{-1}/N) = (x/N)(R/N) \).

Let \(M \mid N \). A change of modulus from \(N \) (using \(R = R(N) \)) to \(M \) (using \(R = R(M) \))
proceeds normally if \(R(M) = R(N) \). If \(R(M) \neq R(N) \), multiply each \(N \)-residue by
\((R(N)/R(M))^{-1} \mod M \) during the conversion.

2. Multiprecision Case. If \(N \) and \(R \) are multiprecision, then the computations of
\(m \) and \(mN \) within \(\text{REDC} \) involve multiprecision arithmetic. Let \(b \) be the base
used for multiprecision arithmetic, and assume \(R = b^n \), where \(n > 0 \). Let \(T =
(T_{2n-1}T_{2n-2} \cdots T_0)_b \) satisfy \(0 \leq T < RN \). We can compute \(TR^{-1} \mod N \) with \(n
\) single-precision multiplications modulo \(R \), \(n \) multiplications of single-precision
integers by \(N \), and some additions:

\[
c \leftarrow 0
\]

\[
\text{for } i := 0 \text{ step } 1 \text{ to } n - 1 \text{ do}
\]

\[
(dT_{i+n-1} \cdots T_i)_b \leftarrow (0T_{i+n-1} \cdots T_i)_b + N^*(T_iN' \mod R)
\]

\[
(cT_{i+n})_b \leftarrow c + d + T_{i+n}
\]

\[
[T \text{ is a multiple of } b^{i+1}]
\]

\[
[T + cb^{i+n+1} \text{ is congruent mod } N \text{ to the original } T]
\]

\[
[0 \leq T < (R + b')N]
\]

\[
\text{end for}
\]

\[
\text{if } (cT_{2n-1} \cdots T_n)_b \geq N \text{ then}
\]

\[
\text{return } (cT_{2n-1} \cdots T_n)_b - N
\]

\[
\text{else}
\]

\[
\text{return } (T_{2n-1} \cdots T_n)_b
\]

\[
\text{end if}
\]

Here variable \(c \) represents a delayed carry—it will always be 0 or 1.

3. Hardware Implementation. This algorithm is suitable for hardware or software.
A hardware implementation can use a variation of these ideas to overlap the
multiplication and reduction phases. Suppose \(R = 2^n \) and \(N \) is odd. Let \(x =
(x_{n-1}x_{n-2} \cdots x_0)_2 \), where each \(x_i \) is 0 or 1. Let \(0 \leq y < N \). To compute
\(xyR^{-1} \mod N \), set \(S_0 = 0 \) and \(S_{i+1} \) to \((S_i + x_iy)/2 \) or \((S_i + x_iy + N)/2 \), whichever
is an integer, for \(i = 0, 1, 2, \ldots, n - 1 \). By induction, \(2S_i \equiv (x_{i-1} \cdots x_0)y \mod N \)
and \(0 \leq S_i < N + y < 2N \). Therefore \(xyR^{-1} \mod N \) is either \(S_n \) or \(S_n - N \).

