Homework Due Oct 26

3 6 1 3 5 7 1

I get T'

II get Level Sequence

III Reconstruct Alphabetic Tree
A node is a □ or a ○

Two nodes are compatible if there is no □ between them

A weight sequence is a sequence of nodes with weight

Weight of a father is the sum of the two sons’ weights

Position of a father is the position of the left son

Given two adjacent nodes of equal weights, the left is considered less
Step I: Combination

Combine the min weight compatible pair until there is a tree T'
Step II: Get levels of \square in T'
Step III: Reconstruction
Read the levels from left to right. Use a stack. 2, 3, 4, 4, 2, 2
Step I: Combination

Instead of min weight compatible pair, use a local min weight compatible pair in a weight sequence.

\[a, b, c, d \]

If \(a > c \) and \(b < d \), then \(b \) and \(c \) is a local minimum.
Cost of a tree from a set \leq cost of a tree from a sequence.
Two circle at the bottom
One circle and one square
Two squares on the slope
For an increasing weight sequence, Huffman = Hu-Tucker, so the tree T' is optimum.

For a valley sequence, the tree T' is optimum.
T' can be normalized.

T':

```
  13
 /   \
/     \
8-------5
 |       |
4 2 3 4
```

T_n:

```
  13
 /   \
/     \
6-------7
 |       |
4 2 3 4
```