Announcements

- HW1 assigned
- Most of this lecture was on the blackboard. These slides cover the same material as presented in DHS

Chapter 4 (Part 1): Non-Parametric Classification (Sections 4.1-4.3)

- Introduction
- Density Estimation
- Parzen Windows

Introduction

- All Parametric densities are unimodal (have a single local maximum), whereas many practical problems involve multimodal densities
- Nonparametric procedures can be used with arbitrary distributions and without the assumption that the forms of the underlying densities are known
- There are two types of nonparametric methods:
 - Estimating $P(x)$
 - Bypass probability and go directly to a-posteriori probability estimation

Density Estimation

- Basic idea:
 - Probability that a vector x will fall in region R is:
 $$P = \frac{\int p(x')dx'}{n}$$ \hspace{1cm} (1)
 - P is a smoothed (or averaged) version of the density function $p(x)$ if we have a sample of size n; therefore, the probability that k points fall in R is then:
 $$P_k = \frac{n}{k} P^k (1-P)^{n-k}$$ \hspace{1cm} (2)
 - and the expected value for k is:
 $$E(k) = nP$$ \hspace{1cm} (3)
ML estimation of $P = \theta$ is reached for $
abla P = k/n = P$.

Therefore, the ratio k/n is a good estimate for the probability P and hence for the density function $p(x)$.

$p(x)$ is continuous and that the region R is so small that p does not vary significantly within it, we can write:

$$\int_{R} p(x') \, dx' \cong p(x) V$$ \hspace{1cm} (4)

where is a point within R and V the volume enclosed by R.

Combining equation (1), (3) and (4) yields:

$$p(x) \cong \frac{k}{nV}$$

Density Estimation (cont.)

- **Justification of equation (4)**

$$\int_{R} p(x') \, dx' \cong p(x) V$$ \hspace{1cm} (4)

We assume that $p(x)$ is continuous and that region R is so small that p does not vary significantly within R. Since $p(x) = constant$, it is not a part of the sum.

The fraction $k/(nV)$ is a space averaged value of $p(x)$. $p(x)$ is obtained only if V approaches zero. This is the case where no samples are included in R: it is an uninteresting case!

$$\lim_{V \to 0, k \to 0} p(x) = 0 \text{ (if } n \text{ is fixed)}$$

In this case, the estimate diverges: it is an uninteresting case!

- **Condition for convergence**

The fraction $k/(nV)$ is a space averaged value of $p(x)$. $p(x)$ is obtained only if V approaches zero.

$$\lim_{V \to 0, k \to 0} p(x) = 0 \text{ (if } n \text{ is fixed)}$$

This is the case where no samples are included in R: it is an uninteresting case!

$$\lim_{V \to 0, k \to 0} p(x) = \infty$$

In this case, the estimate diverges: it is an uninteresting case!

- **The volume V needs to approach 0 anyway if we want to use this estimation**

 - Practically, V cannot be allowed to become small since the number of samples is always limited.
 - One will have to accept a certain amount of variance in the ratio k/n.
 - Theoretically, if an unlimited number of samples is available, we can circumvent this difficulty.

To estimate the density of x, we form a sequence of regions $R_1, R_2, ..., R_n$: the first region contains one sample, the second two samples, and so on.

Let V be the volume of R_n, k_n the number of samples falling in R_n, and $p(x)$ be the n^{th} estimate for $p(x)$:

$$p(x) = \frac{k}{nV}$$ \hspace{1cm} (7)
Three necessary conditions should apply if we want \(p_n(x) \) to converge to \(p(x) \):

1. \(\lim_{n \to \infty} V_n = 0 \)
2. \(\lim_{n \to \infty} k_n = \infty \)
3. \(\lim_{n \to \infty} k_n / n = 0 \)

There are two different ways of obtaining sequences of regions that satisfy these conditions:

(a) Shrink an initial region where \(V_n = 1/n \) and show that

\[
p_n(x) \to p(x)
\]

This is called "the Parzen-window estimation method".

(b) Specify \(k_n \) as some function of \(n \), such as \(k_n = \sqrt{n} \); the volume \(V_n \) is grown until it encloses \(k_n \) neighbors of \(x \). This is called "the \(k \)-nearest neighbor estimation method".

Parzen Windows

- Parzen-window approach to estimate densities assumes that the region \(R_n \) is a \(d \)-dimensional hypercube

\[
V_n = h_n^d \quad (h_n: \text{length of the edge of } R_n)
\]

Let \(\phi(u) \) be the following window function:

\[
\phi(u) = \begin{cases}
1 & |u_j| \leq \frac{1}{2}, j = 1, \ldots, d \\
0 & \text{otherwise}
\end{cases}
\]

- \(\phi((x-x)/h_n) \) is equal to unity if \(x \) falls within the hypercube of volume \(V_n \) centered at \(x \) and equal to zero otherwise.

Parzen Window Example

- Draw samples from a Normal distribution, \(N(0,1) \)

Let \(\phi(u) = (1/(\sqrt{2\pi})) \exp(-u^2/2) \)

\[h_n = h/\sqrt{n} \quad (n>1) \]

Thus:

\[
p_n(x) = \frac{1}{n} \sum_{i=1}^{n} \phi \left(\frac{x-x_i}{h_n} \right)
\]

is an average of normal densities centered at the samples \(x \).

Numerical results:

For \(n = 1 \) and \(h = 2 \)

\[
p_1(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \to N(0,1)
\]

For \(n = 10 \) and \(h = 0.1 \), the contributions of the individual samples are clearly observable!
Analogous results are also obtained in two dimensions as illustrated:

- Case where $p(x) = \lambda_1 U(a,b) + \lambda_2 T(c,d)$ (unknown density) (mixture of a uniform and a triangle density)

Figure 4.5: Parzen-window estimates of a univariate normal density using different window widths and numbers of samples. The vertical axes have been scaled to better show the structure in each graph. Note particularly that the $n = \infty$ estimates are the same and match the true density functions, regardless of window width. From: Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

Figure 4.6: Parzen-window estimates of a bivariate normal density using different window widths and numbers of samples. The vertical axes have been scaled to better show the structure in each graph. Note particularly that the $n = \infty$ estimates are the same (and match the true distribution), regardless of window width. From: Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

Figure 4.7: Parzen-window estimates of a bimodal distribution using different window widths and numbers of samples. Note particularly that the $n = \infty$ estimates are the same (and match the true distribution), regardless of window width. From: Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
• **Kₙ - Nearest neighbor estimation**

 • **Goal:** a solution for the problem of the unknown “best” window function

 • Let the cell volume be a function of the training data
 • Center a cell about x and let it grow until it captures kᵢ samples \((h = \sqrt{n}) \)
 • \(kᵢ \) are called the \(kᵢ \) nearest-neighbors of \(x \)

 2 possibilities can occur:

 • Density is high near \(x \); therefore the cell will be small which provides a good resolution
 • Density is low; therefore the cell will grow large and stop until higher density regions are reached

 We can obtain a family of estimates by setting \(k &= \sqrt{n} \)

Illustration

For \(n = 1 \) and \(kᵢ = \sqrt{n} = 1 \); the estimate becomes:

\[
P_k(x) = kᵢ / n \cdot V
\]

Yikes! Well not so good as the probability goes to infinity at \(x₁ \) but at least we do not have holes in the density!

Things get better as \(n \) gets bigger! And we still don’t have holes in the density even for higher dimensions!

Estimation of a-posteriori probabilities

• **Goal:** estimate \(P(ωᵢ / x) \) from a set of \(n \) labeled samples

 • Let’s place a cell of volume \(V \) around \(x \) and capture \(k \) samples amongst \(k \) turned out to be labeled \(ωᵢ \) then:

 \[
p_k(x, ωᵢ) = kᵢ / n \cdot V
\]

 An estimate for \(p_k(ωᵢ / x) \) is:

 \[
p_ω(ωᵢ / x) = \frac{p_k(x, ωᵢ)}{\sum_{j=1}^{k} p_k(x, \omega_j)} = \frac{kᵢ}{k}
\]

• \(kᵢ/V \) is the fraction of the samples within the cell that are labeled \(ωᵢ \)

• For minimum error rate, the most frequently represented category within the cell is selected

• If \(k \) is large and the cell sufficiently small, the performance will approach the best possible

• So whether we use Parzen windows (or \(K \)-th nearest neighbors to determine our window size \(Vₙ \), we can directly get the a posteriori probabilities.
• The nearest neighbor rule

Let $D_n = \{ x_1, x_2, ..., x_n \}$ be a set of n labeled prototypes.

Let $x' \in D_n$ be the closest prototype to a test point x then the nearest-neighbor rule for classifying x is to assign it the label associated with x'.

The nearest-neighbor rule leads to an error rate greater than the minimum possible, the Bayes rate.

If the number of prototype is large (unlimited), the error rate of the nearest-neighbor classifier is never worse than twice the Bayes rate (it can be demonstrated).

If $n \to \infty$, it is always possible to find x' sufficiently close so that:

$P(\omega_i | x') = P(\omega_i | x)$

• The k-nearest-neighbor rule

Goal: Classify x by assigning it the label most frequently represented among the k nearest samples and use a voting scheme.

Figure 4.13: In two dimensions, the nearest-neighbor algorithm leads to a partitioning of the input space into Voronoi cells, each labeled by the category of the training point it contains. In three dimensions, the cells are three-dimensional, and the decision boundary resembles the surface of a crystal. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

Figure 4.15: The k-nearest-neighbor query starts at the test point x and grows a spherical region until it encloses k training samples, and it labels the test point by a majority vote of these samples. In the $k = 5$ case, the test point x would be labeled the category of the black points. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.