Next few lectures are going to cover memory management

- **Goals of memory management**
  - To provide a convenient abstraction for programming
  - To allocate scarce memory resources among competing processes to maximize performance with minimal overhead

- **Mechanisms**
  - Physical and virtual addressing (1)
  - Techniques: Partitioning, paging, segmentation (1)
  - Page table management, TLBs, VM tricks (2)

- **Policies**
  - Page replacement algorithms (3)
Lecture Overview

- Virtual memory warm-and-fuzzy
- Survey techniques for implementing virtual memory
  - Fixed and variable partitioning
  - Paging
  - Segmentation
- Focus on hardware support and lookup procedure
  - Next lecture we’ll go into sharing, protection, efficient implementations, and other VM tricks and features
Virtual Memory

- OS provides Virtual Memory (VM) as the abstraction for managing memory
  - Indirection allows moving programs around in memory
  - Allows processes to address more or less memory than physically installed in the machine
    » Virtual memory enables a program to execute with less than its complete data in physical memory
    » Many programs do not need all of their code and data at once (or ever) – no need to allocate memory for it
    » OS adjusts amount of memory allocated based upon behavior

- Requires hardware support for efficient implementation
- Let’s go back to the beginning…
In the beginning...

- Rewind to the days of batch programming
  - Programs use physical addresses directly
  - OS loads job, runs it, unloads it

- Multiprogramming changes all of this
  - Want multiple processes in memory at once
    - Overlap I/O and CPU of multiple jobs
  - Can do it a number of ways
    - Fixed and variable partitioning, paging, segmentation
  - Requirements
    - Need protection – restrict which addresses jobs can use
    - Fast translation – lookups need to be fast
    - Fast change – updating memory hardware on context switch
Virtual Addresses

- To make it easier to manage the memory of processes running in the system, we’re going to make them use **virtual addresses** (logical addresses)
  - Virtual addresses are independent of the actual physical location of the data referenced
  - OS determines location of data in physical memory
  - Instructions executed by the CPU issue virtual addresses
  - Virtual addresses are translated by hardware into physical addresses (with help from OS)
  - The set of virtual addresses that can be used by a process comprises its **virtual address space**

- Many ways to do this translation…
  - Start with old, simple ways, progress to current techniques
Fixed Partitions

- Physical memory is broken up into fixed partitions
  - Hardware requirements: base register
  - Physical address = virtual address + base register
  - Base register loaded by OS when it switches to a process
  - Size of each partition is the same and fixed
  - How do we provide protection?

- Advantages
  - Easy to implement, fast context switch

- Problems
  - Internal fragmentation: memory in a partition not used by a process is not available to other processes
  - Partition size: one size does not fit all (very large processes?)
Fixed Partitions

Virtual Address

Offset

Base Register

P4’s Base

+ 

Physical Memory

P1

P2

P3

P4

P5
Variable Partitions

- Natural extension -- physical memory is broken up into variable sized partitions
  - Hardware requirements: base register and limit register
  - Physical address = virtual address + base register
  - Why do we need the limit register? Protection
  - If (physical address > base + limit) then exception fault

- Advantages
  - No internal fragmentation: allocate just enough for process

- Problems
  - External fragmentation: job loading and unloading produces empty holes scattered throughout memory
Variable Partitions

Virtual Address

Offset

<

Yes?

No?

Protection Fault

Base Register

P3’s Base

Limit Register

P3’s Limit

P1

P2

P3

Yes?

No?
Paging solves the external fragmentation problem by using fixed sized units in both physical and virtual memory.
User/Process Perspective

- Users (and processes) view memory as one contiguous address space from 0 through N
  - Virtual address space (VAS)
- In reality, pages are scattered throughout physical storage
- The mapping is invisible to the program
- Protection is provided because a program cannot reference memory outside of its VAS
  - The address “0x1000” maps to different physical addresses in different processes
Paging

- Translating addresses
  - Virtual address has two parts: virtual page number and offset
  - Virtual page number (VPN) is an index into a page table
  - Page table determines page frame number (PFN)
  - Physical address is PFN::offset

- Page tables
  - Map virtual page number (VPN) to page frame number (PFN)
    - VPN is the index into the table that determines PFN
  - One page table entry (PTE) per page in virtual address space
    - Or, one PTE per VPN
Page Lookups

Virtual Address
Page number Offset

Page Table
Page frame

Physical Address
Page frame Offset

Physical Memory
Paging Example

- Pages are 4K
  - VPN is 20 bits \(2^{20}\) VPNs, offset is 12 bits
- Virtual address is 0x7468
  - Virtual page is 0x7, offset is 0x468
- Page table entry 0x7 contains 0x2
  - Page frame base is 0x2 \(*\ 0x1000\) (4K) = 0x2000
  - Seventh virtual page is at address 0x2000 (3rd physical page)
- Physical address = 0x2000 + 0x468 = 0x2468
Page Table Entries (PTEs)

- Page table entries control mapping
  - The Modify bit says whether or not the page has been written
    » It is set when a write to the page occurs
  - The Reference bit says whether the page has been accessed
    » It is set when a read or write to the page occurs
  - The Valid bit says whether or not the PTE can be used
    » It is checked each time the virtual address is used
  - The Protection bits say what operations are allowed on page
    » Read, write, execute
  - The page frame number (PFN) determines physical page
Paging Advantages

- Easy to allocate memory
  - Memory comes from a free list of fixed size chunks
  - Allocating a page is just removing it from the list
  - External fragmentation not a problem

- Easy to swap out chunks of a program
  - All chunks are the same size
  - Use valid bit to detect references to swapped pages
  - Pages are a convenient multiple of the disk block size
Paging Limitations

- Can still have internal fragmentation
  - Process may not use memory in multiples of a page

- Memory reference overhead
  - 2 references per address lookup (page table, then memory)
  - Solution – use a hardware cache of lookups (more later)

- Memory required to hold page table can be significant
  - Need one PTE per page
  - 32 bit address space w/ 4KB pages = $2^{20}$ PTEs
  - 4 bytes/PTE = 4MB/page table
  - 25 processes = 100MB just for page tables!
  - Solution – page the page tables (more later)
Segmentation

- Segmentation is a technique that partitions memory into logically related data units
  - Module, procedure, stack, data, file, etc.
  - Virtual addresses become \(<\text{segment } #, \text{ offset}>\)
  - Units of memory from user’s perspective

- Natural extension of variable-sized partitions
  - Variable-sized partitions = 1 segment/process
  - Segmentation = many segments/process

- Hardware support
  - Multiple base/limit pairs, one per segment (segment table)
  - Segments named by #, used to index into table
Segment Lookups

Virtual Address → Segment Table

<table>
<thead>
<tr>
<th>Segment #</th>
<th>Offset</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Limit</th>
<th>Base</th>
</tr>
</thead>
</table>

Segment Table → Physical Memory

Physical Memory

Protection Fault

Yes?

No?
Segment Table

- **Extensions**
  - Can have one segment table per process
    - Segment #s are then process-relative (why do this?)
  - Can easily share memory
    - Put same translation into base/limit pair
    - Can share with different protections (same base/limit, diff prot)

- **Problems**
  - Cross-segment addresses
    - Segments need to have same #s for pointers to them to be shared among processes
  - Large segment tables
    - Keep in main memory, use hardware cache for speed
Segmentation and Paging

- Can combine segmentation and paging
  - The x86 supports segments and paging
- Use segments to manage logically related units
  - Module, procedure, stack, file, data, etc.
  - Segments vary in size, but usually large (multiple pages)
- Use pages to partition segments into fixed size chunks
  - Makes segments easier to manage within physical memory
    » Segments become “pageable” – rather than moving segments into and out of memory, just move page portions of segment
  - Need to allocate page table entries only for those pieces of the segments that have themselves been allocated
- Tends to be complex…
Summary

- Virtual memory
  - Processes use virtual addresses
  - OS + hardware translates virtual address into physical addresses

- Various techniques
  - Fixed partitions – easy to use, but internal fragmentation
  - Variable partitions – more efficient, but external fragmentation
  - Paging – use small, fixed size chunks, efficient for OS
  - Segmentation – manage in chunks from user’s perspective
  - Combine paging and segmentation to get benefits of both
Next time…

- Read Chapter 9