What is a pushdown automata?

An NFA augmented with a stack

Stack:
- Holds stack symbols (stack alphabet, τ separate from input alphabet, Σ)
- Can pop symbol from the stack
 - popping empty stack causes this computation to not accept
 - Can only retrieve topmost symbol
- Can push a stack symbol
 - Always goes on top
- No way to explicitly test whether stack is empty
 - But we've got a trick to be able to tell!

State diagram
- labels become: a, $b \rightarrow c$
 - means
 - reading a from input
 - a and top of stack is b
 - pop b
 - push c
Example

Language = \{0^n1^n | n \geq 0\}

Example

Language = \{w \in \{0, 1\}^* | w \text{ has equal numbers of 0's and 1's}\}
Example

Language = \{w\#w^R| w\in\{0, 1\}^*\}

Example

Language = \{ww^R| w\in\{0, 1\}^*\}
Example

Language = w not a palindrome (over \{0, 1\}*)

Example

Language: L\{xy \mid |x|=|y|, x \neq y, x, y \in \{0, 1\}*\}
CFG can be converted to NPDA

Easiest to use Chomsky Normal Form

- Book uses any grammar without conversion; idea is the same

Let’s look at leftmost derivation with CNF

- Example grammar
 - \(S \rightarrow TT \mid RT \)
 - \(T \rightarrow 0 \mid TT \mid 1 \)
 - \(R \rightarrow 0 \mid RR \)

- Example string
 - 01101

CFG can be converted to NPDA

Without Chomsky Normal Form

- Can have arbitrary mix of terminals and non-terminals in sentential form

- Store everything except leading terminals on stack

- Match input symbols to stack terminal symbols

- Example:
 - \(S \rightarrow 0T1 \mid 1 \)
 - \(T \rightarrow T0 \mid \epsilon \)

- Example string:
 - 0001
CFG equivalent to PDA

Still need to show can convert PDA to CFG
 • Believe me:) (In book, if you desire)