Formalism for Reductions

Formal definition of (mapping) reduction

\[A \leq_M B \text{ if:} \]

- there exists a total computable function \(f \) that converts instances of problem \(A \) into instances of problem \(B \)
Things to note about Mapping Reductions: \(A \leq_M B \)

Only one call to the decider for \(B \) is allowed

The call to the decider for \(B \) is the last thing the decider for \(A \) does

The answer for the decider for \(B \) is the answer for the decider for \(A \)

If \(B \) is decidable, \(A \) is decidable
If \(B \) is Turing-recognizable, \(A \) is Turing-recognizable

Example: \(A_{TM} \leq_M HALT_{TM} \)

Mapping function:
- \(f(<M,w>) = <M', w> \) where \(M' = \) “on input \(x \):
 - run \(M \) on \(x \)
 - If it accepts, accept
 - If it rejects, infinite loop”

How do we know \(f \) is computable?
- It can be solved by a TM, \(F \)
- \(F = \) “on input \(<M, w> \), construct \(M' \)
 - write \(<M', w> \) on tape”

Proof that \(f \) reduces \(A_{TM} \) to \(HALT_{TM} \)
- If \(x \in A_{TM} \)
 - If \(x \notin A_{TM} \)
 - \(x \) is of form \(<M, w> \)
 - \(x \) is not of form \(<M, w> \)
Mapping Reductions have limitations

The restrictions (________________, ________________, ____________) mean that some reductions that seem reasonable don’t work.

Can’t reduce A_{TM} to $EMPTY_{TM}$ with a mapping reduction

- If we could, then we could reduce A_{TM}^C to $EMPTY_{TM}^C$ with the same mapping function
- But, $EMPTY_{TM}^C$ is Turing-recognizable (Why?)
- A_{TM}^C is not Turing-recognizable (Why?)
- Can’t have $A \leq_T B$, and A not Turing-recognizable and B Turing-recognizable (Why?)

Can’t reduce A_{TM} to A_{TM}^C using mapping reduction

More General Reduction

Turing Machine with an oracle

- An oracle Turing Machine, M^B (TM with an oracle for B) works just like a regular Turing Machine, but can ask questions of the oracle: “is $w \in B$?”

Now we can ask the following questions about the machine M^B:

- Can it decide A?
- If so, then A is decidable relative to B ($A \leq_T M^B$, read “A is Turing-reducible to B”)
Things to note about Turing Reductions: $A \leq_{TM} B$

Many calls to the oracle for B are allowed

The call to the oracle for B need not be the last thing the decider for A does
- It can do further computation

The answer for the oracle for B is not necessarily the answer for the decider for A

If B is decidable, A is decidable
If B is Turing-recognizable, A is Turing-recognizable

Example of Turing-reducibility

A_{TM} is Turing-reducible to A_{TM}^C ($A_{TM} \leq_{TM} A_{TM}^C$)

$T_{ATMC} = \text{"On input } <M, w> \text{ where } M \text{ is a TM:}
\quad \text{Query the oracle to determine whether } <M,w> \in A_{TM}^C$
\quad If the oracle answers yes, reject. Otherwise (no), accept."

A_{TM} is Turing-reducible to EMPTY_{TM} ($A_{TM} \leq_{TM} \text{EMPTY}_{TM}$)

$T_{ATM} = \text{"On input } <M, w> \text{ where } M \text{ is a TM:}
\quad \text{Build } M' = \text{"On input } x,
\quad \text{Simulate } M \text{ on } w
\quad \text{If } M \text{ accepts } w, \text{ accept}
\quad \text{If } M \text{ rejects } w, \text{ reject"
\quad Query the oracle to determine whether } <M'> \in A_{TM}$
\quad If the oracle answers yes, reject. Otherwise (no), accept."
Continuation of Post Correspondence Problem

Reducing PCP to \cap_{CFG}

$\cap_{CFG} = \{(G_1, G_2)| G_1$ and G_2 are CFGs and $L(G_1) \cap L(G_2) = \emptyset\}$

- Reducing PCP to \cap_{CFG} (PCP \leq \cap_{CFG})
- Make A into one grammar, B into another

\begin{align*}
A & \rightarrow 00A1 | 110A2 | 000A3 | 00#1 | 110#2 | 000#3 \\
B & \rightarrow 000B1 | 0B2 | 11B3 | 000#1 | 0#2 | 11#3
\end{align*}

<table>
<thead>
<tr>
<th>i</th>
<th>A_i</th>
<th>B_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00</td>
<td>000</td>
</tr>
<tr>
<td>2</td>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>000</td>
<td>11</td>
</tr>
</tbody>
</table>
Reducing \cap_{CFG} to ALL_{CFG}

$ALL_{CFG} = \{ G | G \text{ is a CFG and } L(G) = \Sigma^* \}$

- Create $G' = (G_1 \cap G_2)^c$
- Check whether $G' \in ALL_{CFG}$: If yes, G_1 and G_2 don’t intersect. If no, they do intersect.

- Is this valid? Is $G_1 \cap G_2$ a CFG? Is the complement of a CFL a CFL?
 - No

- However, look at $PCP \subseteq^{\cap_{CFG}} \subseteq ALL_{CFG}$
 - The grammars used in the reduction of PCP were deterministic!

- So, actually, the reduction is:

 - $G' = G_1^c \cup G_2^c = (G_1 \cap G_2)^c$
 - G^c is DCFG
 - Union is CFG

Reducing ALL_{CFG} to $EQ_{CFG/REG}$

$EQ_{CFG/REG} = \{(G, R) | G \text{ is a CFG, } R \text{ is an FSA, } L(G) = L(R)\}$

- How to solve $ALL(G)$:
 - Check $EQ(G, \Sigma^*)$
Reducing $E Q_{CFG/REG}$ to $E Q_{CFG}$

$E Q_{CFG} = \{(G_1, G_2) \mid G_1 \text{ and } G_2 \text{ are CFGs and } L(G_1) = L(G_2)\}$

Reductions