Post Correspondence Problem

Given two sets A and B of numbered strings A_i, B_i:

<table>
<thead>
<tr>
<th>i</th>
<th>A_i</th>
<th>B_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00</td>
<td>000</td>
</tr>
<tr>
<td>2</td>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>000</td>
<td>11</td>
</tr>
</tbody>
</table>

Is there a way to pick a sequence of numbers (i’s), such that:

- If you concatenate the As using that sequence
- And concatenate the Bs using that sequence
- The two concatenations are equal

Example:
Example

<table>
<thead>
<tr>
<th>i</th>
<th>Ai</th>
<th>Bi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00</td>
<td>010</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i</th>
<th>Ai</th>
<th>Bi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00</td>
<td>001</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>0110</td>
</tr>
</tbody>
</table>

Post Correspondence Problem

The Post Correspondence Problem
- Given sequence of Ai and sequence of Bi, is there a solution?
 - Undecidable problem!
 - Technical reduction that simulates the computation of a TM
Idea of proving PCP undecidable

Assume:
- TM that never moves left from LHS and never writes a blank
- Modification of PCP (MPCP) that requires solution starts with first row

- String to be generated:
 - #c_1#c_2#...#c_n
 - Each c_i a TM configuration
- A generates computation
- B generates computation, one i ahead
- A starts with:
 - #
- B starts with:
 - #qw#
- Now, each match either:
 - copies a symbol from c_i to c_{i+1} (from A to B)
 - handles a transition from c_i to c_{i+1}
 - ends the configuration
- At the end, must deal with accepting configuration

Example

q_0: On leftmost non-blank
q_1: Find first y
 x->!,R
 $->,R
 x->x,R
 y->,L
q_3: verify no x's y's
 x->x,R
 y->y,R
 ->Z,L
accept

q_2: move left to first blank
 x->x,L
 y->y,L
 $->L
 $->L
Reducing PCP to \cap_{CFG}

$\cap_{\text{CFG}} = \{(G_1, G_2) | G_1 \text{ and } G_2 \text{ are CFGs and } L(G_1) \cap L(G_2) = \emptyset\}$

- Reducing PCP to \cap_{CFG} (PCP \leq \cap_{CFG})
- Make A into one grammar, B into another

<table>
<thead>
<tr>
<th>i</th>
<th>A_i</th>
<th>B_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00</td>
<td>000</td>
</tr>
<tr>
<td>2</td>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>000</td>
<td>11</td>
</tr>
</tbody>
</table>

- $A \rightarrow 00A1 | 110A2 | 000A3 |
 00#1 | 110#2 | 000#3
- $B \rightarrow 000B1 | 0B2 | 11B3 |
 000#1 | 0#2 | 11#3

Reducing PCP to AMBIG$_{\text{CFG}}$

AMBIG$_{\text{CFG}} = \{G | G \text{ is an ambiguous CFG}\}$

- Reducing PCP to AMBIG$_{\text{CFG}}$ (PCP \leq AMBIG$_{\text{CFG}}$)
- Make a grammar

<table>
<thead>
<tr>
<th>i</th>
<th>A_i</th>
<th>B_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00</td>
<td>000</td>
</tr>
<tr>
<td>2</td>
<td>110</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>000</td>
<td>11</td>
</tr>
</tbody>
</table>

- $A \rightarrow 00A1 | 110A2 | 000A3 |
 00#1 | 110#2 | 000#3
- $B \rightarrow 000B1 | 0B2 | 11B3 |
 000#1 | 0#2 | 11#3
- $S \rightarrow A | B$
Reducing \cap_{CFG} to ALL_{CFG}

$\text{ALL}_{\text{CFG}} = \{G | \text{G is a CFG and } L(G) = \Sigma^*\}$
- Create $G' = (G_1 \cap G_2)^c$
- Check whether $G' \in \text{ALL}_{\text{CFG}}$ If yes, G_1 and G_2 don’t intersect. If no, they do intersect.
- Is this valid? Is $G_1 \cap G_2$ a CFG? Is the complement of a CFL a CFL?
 - No
- However, look at $\text{PCP} \leq_{\text{CFG}} \leq_{\text{ALL}_{\text{CFG}}}$
 - The grammars used in the reduction of PCP were deterministic!

 - So, actually, the reduction is:

 - $G' = G_1^c \cup G_2^c = (G_1 \cap G_2)^c$
 - G^c is DCFG
 - Union is CFG

Reducing ALL_{CFG} to $\text{EQ}_{\text{CFG/REG}}$

$\text{EQ}_{\text{CFG/REG}} = \{(G, R) | \text{G is a CFG, R is an FSA, } L(G) = L(R)\}$
- How to solve $\text{ALL}(G)$:
 - Check $\text{EQ}(G, \Sigma^*)$
Reducing $\text{EQ}_{\text{CFG/REG}}$ to EQ_{CFG}

$\text{EQ}_{\text{CFG}} = \{(G_1, G_2) | G_1 \text{ and } G_2 \text{ are CFGs and } L(G_1) = L(G_2)\}$

Reductions