We have an algorithm that converts instances of problem P_1 to instances of problem P_2 where the answer to P_2 can be used to come up with an answer to P_1.

- We have reduced P_1 to P_2
- P_2 is at least as hard as P_1
 - Because if we have an algorithm for P_2, we have an algorithm for P_1.

Start with a known hard problem P_1 for which no machine exists:
- Like “Does M on w accept?”

Assume there’s a TM, M_2, that answers some other question P_2:
- Like “Does M accept the empty language?”

Show a way to create a Turing Machine, M_1 that decides P_1:
- Takes the inputs for P_1.
- Converts them into inputs for M_2.
- Run M_2 on these new inputs
- Use the answer M_2 provides to come up with an answer for M_1.
- But, since M_1 can’t exist, M_2 can’t exist either.
Reduction redux

We reduce one language to another language
- Not one machine to another machine

When we reduce A to B:
- We know we can’t decide A
- We’re showing we can’t decide B

When we reduce A to B
- Assume we have a decider for B, M
- Create a machine M’ that takes input for A
- M’ gets to call the decider for B
- M’ must decide A
- Since A is undecidable, no decider for B can exist

Reducing A_TM to halting problem

Halting problem:
- Given M on w, does M halt (accept or reject)?
- \(\text{HALT}_\text{TM} = \{(M, w)| M \text{ is a TM and } M \text{ halts on input } w\} \)

Assume there exists machine M_Halt that decides the halting problem
Create M’ = “On input <M, w>, an encoding of TM M and string w:
- Call M_Halt on <M,w>
 - If rejects, reject
 - If accepts, simulate M on w and when it halts, accept or reject appropriately”

M’ decides A_TM={<M, w>| M is a TM and M accepts input w}
- But this is undecidable!
- So, M_Halt doesn’t exist
- Therefore, Halting problem is undecidable
\[\text{EMPTY}_\text{TM} = \{ <M> \mid M \text{ is a TM and } M \text{ accepts the empty language} \} \]

Is \(\text{EMPTY}_\text{TM} \) decidable?

\[\text{REGULAR}_\text{TM} = \{ <M> \mid M \text{ is a TM and } M \text{ accepts a regular language} \} \]

Is \(\text{REGULAR}_\text{TM} \) decidable?
\(\text{CF}_{\text{TM}}=\{<M> \mid M \text{ is a TM and } M \text{ accepts a context-free language}\} \)

Is \(\text{CF}_{\text{TM}} \) decidable?

\(\text{EQ}_{\text{TM}}=\{<M_1, M_2> \mid M_1, M_2 \text{ are TM and } M_1, M_2 \text{ accept the same language}\} \)

Is \(\text{EQ}_{\text{TM}} \) decidable?
Linear Bounded Automaton

Turing machines that can’t read/write outside the input

- $A_{\text{LBA}} = \{<M, w>| M \text{ is an LBA such that } M(w) \text{ accepts}\}$
- A_{LBA} is decidable

Linear-Bounded Automaton

E_{LBA} is undecidable

- If decidable, here’s algorithm for A_{TM}
Does a CFG G generate all strings?

$\text{ALLCFG} = \{ G \mid G \text{ is a CFG and } L(G) = \Sigma^* \}$

- Given M and w, construct G such that
 - G accepts all strings except accepting computation history for M on w