Turing Machine

- Has a one-way infinite tape
 - Input is written on the tape, with blanks afterward

- Has a current location on the tape (head)

- Has a state-machine
 - Based on the symbol under the head:
 - Writes a new symbol
 - Moves left-or-right
 - Has two final states (take effect immediately)
 - Accept
 - Reject

- Can't go off the left-hand-side of the tape
Example Turing Machine

$L = \{x^n y^n z^n \mid n \geq 0\}$

Formal definition

A 7-tuple

- Q: set of states
- Σ: input alphabet (doesn't contain $__$)
- Γ: tape alphabet (includes $___$, subset of Σ)
- δ: $Q \times \Gamma \rightarrow Q \times \{L,R\}$ transition function
- $q_0 \in Q$: start state (first state will be start state)
- $q_{\text{accept}} \in Q$: accept state (halts immediately)
- $q_{\text{reject}} \in Q$: reject state (halts immediately)
Formal Definition

A configuration is:
- a state, \(q \)
- tape contents
- location of head

Represented with:

One configuration can yield another configuration if appropriate based on transition function
- \(ua q_i bv \) yields \(u q_j acv \) if \(\delta(q_i, b) = \)
- \(ua q_i bv \) yields \(uac q_j v \) if \(\delta(q_i, b) = \)
- \(q_i bv \) yields \(q_j cv \) if \(\delta(q_i, b) = \)
- \(q_i bv \) yields \(c q_j v \) if \(\delta(q_i, b) = \)
- \(ua q_i \) is treated as

Turing machine \(M \) accepts (rejects) string \(w \) if it there is a sequence of configurations from the start configuration (\(q_0 w \)) to an accepting (rejecting) configuration.

The language recognized by \(M \) (or the language of \(M \)) is denoted

Recognizing vs. Deciding

\(L \) is Turing-recognizable (recursively enumerable if)
- There exists a TM, \(M \) where every string \(s \) in \(L \)
 - is accepted by \(M \)

\(L \) is Turing-decidable (recursive) if
- There exists a TM, \(M \) where, for every string \(s \):
 - If \(S \) in \(L \), \(M \) accepts \(L \)
 - If \(S \) not in \(L \), \(M \) rejects \(L \)
- That is, \(M \) (eventually) halts on all inputs