Answer all questions. Give informal (at least) proofs for all answers. Grading will be on completeness and logical correctness, and if applicable, efficiency, as well as correctness.

Analyzing loops-10pts Consider the following algorithm, that given two sequences of symbols $w_1...w_n$ and $v_1...v_n$ with $n \geq m$, returns the largest suffix of w that is also a prefix of v, i.e., the biggest I so that $v_1...v_I = w_{n-I+1}...w_n$.

PrefixSuffixMatch($w_1..w_n, v_1..v_n$)

1. $Best \leftarrow 0$
2. FOR $I = 1$ to n do:
 3. $K \leftarrow 1; J \leftarrow n - I + 1$
 4. While $v_K = w_J$ and $K \leq I$ do $K++; J++$
 5. IF $K = I + 1$ THEN $Best \leftarrow I$
 6. Return $Best$

Give a worst-case time analysis, up to Θ, for this algorithm, as a function of n.

Correctness proofs You are given an array $A[1..n]$ of n integers in the range $1..k$. You want to find the smallest consecutive subarray, $A[I..J]$ that contains each of the k elements, if such a subarray exists.

Here’s a high-level algorithmic strategy for this problem:

Small Consecutive Subarray Containing All Values ($A[1..n]$, k)

1. Define $PrevOcc[1..k]$ as an array of integers. For each $j \in \{1..k\}$, initialize $PrevOcc(j)$ to $-n$.
 Initialize ShortestSubarray to (NIL, NIL), and $BestLength$ to $n + 1$.
2. For $J = 1$ TO n do:
 3. $PrevOcc(A[J]) \leftarrow J$
 4. Let T be the $\min_K PrevOcc(K)$;
 5. IF $J - T + 1 < BestLength$ then $ShortestSubarray \leftarrow (T, J); BestLength \leftarrow J - T + 1$.
 6. IF $BestLength \leq n$ return $ShortestSubarray$, else return “Not all present”.

For example, say $k = 4$ and the input array were $A[1..12] = 2, 3, 4, 3, 2, 3, 2, 1, 3, 3, 4$. Then the values of the $PrevOcc$ would evolve as:

<table>
<thead>
<tr>
<th>J</th>
<th>$PrevOcc(1)$</th>
<th>$PrevOcc(2)$</th>
<th>$PrevOcc(3)$</th>
<th>$PrevOcc(4)$</th>
<th>T</th>
<th>$J-T+1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-12</td>
<td>1</td>
<td>-12</td>
<td>-12</td>
<td>-12</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>-12</td>
<td>1</td>
<td>2</td>
<td>-12</td>
<td>-12</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>-12</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-12</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>-12</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>-12</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>-12</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>-12</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>-12</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>-12</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>-12</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>-12</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>11</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

Below, there’s a proof that this algorithm works with some gaps missing. The gaps are labelled with Roman numerals. For each gap, supply the missing phrase.
Proof: We start by proving the following

I : For each iteration j of the loop, and for each $V \in \{1..k\}$, $\text{PrevOcc}(V)$ is the last position before j where V occurs in A, or is $-n$ if no such position exists. More precisely, if $\text{PrevOcc}(V) \neq -n$, $A[\text{PrevOcc}(V)] = \iff$, and, for each j' with $\iff < j' \leq \iff V V V$, and if $\text{PrevOcc}(V) = -n$, then for every $1 \leq j' \leq j$, $A[j'] V V V$.

In the base case, $j = 0$, this statement is true, since every $\text{PrevOcc}(V) = \iff V V V$ and there are no $1 \leq j' \leq 0$.

For the induction step, assume that the invariant holds after the loop when $J = j$, and we will prove that it is still true after loop $J = j + 1$. For each $V \neq A[j + 1]$, $\text{PrevOcc}(V)$ does not change through the loop. If $\text{PrevOcc}(V) = -n$, then by the invariant for j, $V \neq A[j']$ for any $1 \leq j' \leq j$. Then since also $V \neq A[j + 1]$, $V \neq A[j']$ for any \iff, as required. If $\text{PrevOcc}(V) \neq -n$, then $A[\text{PrevOcc}(V)] = \iff$ by the invariant for j. Also by the invariant for j, $V \neq A[j']$ for any \iff, and since $A[j + 1] \neq V$, $V \neq A[j']$ for any \iff, as required for the invariant at $j + 1$. For $V = A[j + 1]$, we set $\text{PrevOcc}(V)$ to \iff, and the invariant holds, since $A[\text{PrevOcc}(V)] = A[\iff] = \iff$, and there are no j' with $\text{PrevOcc}(V) = j + 1 < j' \leq j + 1$.

Thus, by induction, the invariant holds for all j, $1 \leq j \leq n$.

At each time j, let $t = \text{min}_V \text{PrevOcc}(V)$. If $t = -n$, there is some V so that $\text{PrevOcc}(V) = -n$. Then by the invariant, $A[j'] \neq V$ for any $1 \leq j' \leq j$, so there is no subarray ending at j that contains all k elements. If $t \neq -n$, then we claim that $A[t,i]$ is the smallest such subarray. First, we need to show that it is such a subarray, that is, for each V, we need to show that there is a j' with \iff so that $A[j'] = V$. Let $j' = \iff$, and since $A[j',i]$ is the smallest such subarray. First, we need to show that there is no smaller subarray $A[t',j]$ with $t' > t$, containing each V. Since $t = \text{min}_V \text{PrevOcc}(V)$, $\iff \leq \text{PrevOcc}(V) \leq j$. Second, we need to show that there is no smaller subarray $A[t',j]$ with $t' < t$, containing each V. Since $t = \text{min}_V \text{PrevOcc}(V)$, we can choose V so that $t = \iff$. Then by the invariant, for each j' with $t < j' \leq i$, \iff. Thus, V is not in such an interval, so there is no smaller interval containing all values.

Thus, our algorithm computes, for each j, the smallest subarray of the form (t,j) that contains all V.

It returns the \iff such interval, which must be the smallest subarray of A containing each V.

Data structures and efficient versions of algorithms 10 pts: For the problem above, give an efficient algorithm to compute the minimum length subarray that contains all $1 \leq J \leq k$. Base it on the strategy given, but specify clearly the data structures and preprocessing used, and give pseudo-code or a clear description of all steps in terms of these data structure operations. Give a time analysis of your algorithm, in terms of both n and k. Some of your grade will be based on the efficiency of your algorithm, as well as correctness.

Divide-and-Conquer Recurrence: 10 points Consider the following recursive algorithm. Its input is an array of positive integers. $A[1..n]$ The goal is to find the maximum possible sum of a sub-sequence $A[I_1] + A[I_2] + \ldots + A[I_k]$ with $1 \leq I_1 < I_2 < I_3 < I_k \leq n$ so that no two elements are consecutive, i.e., $I_{j+1} > I_j + 1$ for each $1 \leq j \leq k$. (Note: here k is any length, not an input parameter.)

MaxNonConsSum$[A[1..n]]$

1. IF $n = 0$ return 0.
4. Case1 $\leftarrow \text{MaxNonConsSum}(A[1..n/2 - 2]) + A[n/2] + \text{MaxNonConsSum}(A[n/2 + 2..n])$ {If we include $A[n/2]$ we can’t include $A[n/2 - 1]$ or $A[n/2 + 1]$}.
5. Case2 $\leftarrow \text{MaxConsSum}(A[1..n/2 - 2]) + \text{MaxNonConsSum}(A[n/2 + 2..n])$ {If we don’t include $A[n/2]$ we can include any of the others}.
6. Return $\text{max}(\text{Case1, Case2})$.

Give a recurrence for the time $T(n)$ taken by the above algorithm. Use the recurrence to give a time analysis up to order. Be sure to justify all of your answers by referring to the algorithm description.