Overview

Greedy algorithms always choose the intuitively “best” option at each decision point, and (unlike backtracking) do not consider other alternatives. The problem is that while this powerful intuition is powerful, it is often wrong – just as in life, acting in one’s immediate best interest is not always the best longer-term strategy. Therefore it is especially important to prove that a greedy algorithm finds the best solution. Luckily, these proofs typically follow a standard form, which we will discuss today.

Example: Event scheduling

Instance: a set of events $E = \{E_i = (s_i, f_i)\}$ where $s_i < f_i$.

Solution form: A subset $S \subset E$.

Constraints: No two events in S intersect.

Objective: Maximize the number of events, $|S|$.

Algorithm

The right heuristic is to always choose the event with the earliest end-time. Here is the backtracking version of Schedule using this choice heuristic:

```c
1 Schedule(E)
2 e <- event minimizing finish(e)
3 s1 <- Schedule(E - overlap(e)) + { e }
4 s2 <- Schedule(E - e)
5 if |s1| > |s2|
6 return s1
7 else
8 return s2
```

The greedy version differs by never considering $s2$ on line 4, always returning $s1$.

November 6, 2006
Correctness

We need to prove that s_1 is always at least as good as s_2, i.e. $|S_1| \leq |S_2|$.

Consider an event e_i chosen by the greedy algorithm. Let S' be the best schedule not containing e_i, i.e. the best solution violating our greedy heuristic; and let S be the best schedule including e_i, i.e. the best following the heuristic in considering e_i. Our goal is to show that S is at least as good as S'.

Theorem: The greedy schedule is always a largest legal schedule.

Lemma: Let E_i be the event with minimal f_i. Let S' be any legal schedule s.t. $E_i \notin S$. Then there is a legal schedule S s.t. $E_i \in S$ and $|S| \geq |S'|$.

Proof: Let $C(E_i)$ be the set of elements that conflict with E_i. Any even $E_j \in C(E_i)$ must have $s_i \leq f_j \leq f_i$. Let $S = S' - C(E_i) \cup \{E_i\}$. Then S, containing E_i, is a legal schedule, since S' has no conflicts, and S does not contain any events in $C(E_i)$.

We still need to show that $|S| \geq |S'|$, i.e. that $|C(E_i)| \leq 1$. Assume that this is not the case, i.e. $\exists E_j, E_k$ with $s_i \leq f_j, f_k \leq f_j$. Then E_j, E_k must conflict, contradicting our assumption that S' is a legal schedule. Therefore $|C(E_i)| \leq 1$, and $|S| \geq |S'|$.

Proof: (by strong induction on $|S|$, the number of events)

Inductive hypothesis: for all n, if there exists a schedule S' with n events, then the transformation above can be used to generate a greedy schedule S with $|S| \geq |S'|$.

Base case: If $|S| = 0, 1$, the algorithm finds either 0 or 1 event.

Inductive case: Assume the greedy algorithm is optimal for $|S| < n$, and let E_i be the first remaining event to finish (i.e. the greedy choice). Let S'_n be the non-greedy optimal schedule making a non-greedy choice instead of E_i, and let S'_{n-1} be its first $n - 1$ events. By our lemma, the schedule $S'' = S'_{n-1} - C(E_i) \cup \{E_i\}$ has $|S''| \geq |S'_n|$ and $E_i \in S''$. By our inductive hypothesis, $|S_{n-1}| \geq |S'_{n-1}|$. Also, since S_{n-1} is greedy, the last event in S'_{n-1} finishes no sooner than the last event in S_{n-1}, so $S_{n-1} \cup \{E_i\}$ is a legal solution.

Therefore

$$|S_n| = |S_{n-1} \cup \{E_i\}| = |S_{n-1} - C(E_i) \cup \{E_i\}|$$

$$\geq |S'_{n-1} - C(E_i) \cup \{E_i\}| = |S''|$$

proving our inductive hypothesis.
Example

$$(1,3), (2,4), (3,6), (0,6), (5,7), (5,8), (9,10)$$

S_2: $\begin{array}{cccc}
+ & + & + & + \\
A: & + & - & (-) \\
B: & + & + & - & (-) \\
S_1: & + & + & + & + \\
\end{array}$

Here S_2’s first move is non-greedy. The transformation in our proof replaces $(2,4)$ with $(1,3)$ (line A), then performs another greedy transformation (line B), yielding an equal-sized schedule S_1.

Implementation

A naive implementation of the above approach, searching the entire list at each step for the next choice, then for overlapping events, would take $O(n^2)$. An efficient implementation instead sorts the list by finish time, and skips over overlapping events as it traverses this sorted list:

```python
1 Schedule2(E)
2 E <- sort_by_finish(E)
3 S <- E[1]
4 f <- finish(E[1])
5 for i = 2 .. n
6   if start(E[i]) > f
7     S <- S + E[i]
8   f <- finish(E[i])
```

General approach

The “modify-the-solution” approach used above can be applied to prove the correctness of many greedy algorithms. In general, we proceed by the following steps:

1. Let d be the first decision point, and let g be the greedy choice at d.
2. Let S' be a solution not choosing g.
3. Show how to transform S' into some S that chooses g, and that is at least as good as S'.
4. Conclude by induction that any S' with a series of non-greedy decisions at $d_1 \ldots d_n$ can be transformed into an equal-or-better greedy solution, and that therefore the greedy algorithm is optimal.