For each of the algorithm problems, design as asymptotically efficient an algorithm as possible. Give a correctness argument (explanation, if it is relatively simple, or proof if not) and time analysis. You may use any well-known algorithm or data structure, or algorithm from the text or from class, as a subroutine without needing to provide details.

Base Conversion. Give an algorithm that inputs an array of \(n \) base base 10 digits representing a positive integer and outputs an array of bits representing the same integer in base 2. Your algorithm should be \(o(n^2) \), strictly better than the time asked for on the calibration homework. You will probably need to use a divide-and-conquer strategy, and use a fast integer multiplication sub-routine (from class).

Binary Tree Isomorphism Two rooted trees \(T_1 \) and \(T_2 \) are isomorphic if there is a 1-1 onto map \(f : T_1 \rightarrow T_2 \) so that \(f(\text{root}_1) = \text{root}_2 \) and \(p_2(f(x)) = f(p_1(x)) \), for every \(x \in T_1 \) except \(\text{root}_1 \). (Here, \(\text{root}_1 \) is the root of \(T_1 \), \(\text{root}_2 \) is the root of \(T_2 \), and \(p_1, p_2 \), represent the parents in the respective trees.) On the calibration homework, an \(O(n^2) \) time algorithm for this problem was given. Give a more efficient \((o(n^2)) \) algorithm for the same problem. (Note that the \(f \) is what your algorithm is looking for, not an input.)

Closest pair of points in 3d Consider the problem of finding the closest pair of distinct points among a list of points in 3-d, \(P_1,..,P_n \), where \(P_i = (x_i,y_i,z_i) \). Modify the two dimensional algorithm given in class. You may need to use a data structure such as a binary search tree or hash table.

Dice pools: This problem arises from calculating success probabilities for certain role-playing games, where players roll dice in proportion to their character’s abilities, and each die is either a “Success”, a “Failure” or “Neutral”, and the outcome is determined by the number of successes minus the number of failures. (For example, in one game, dice take random values from 1 to 10, with 1 being a “Failure” and 8-10 being a “Success”.) Abstractly, the problem is: there are \(n \) independent random variables, \(X_1...X_n \). Each variable is +1 with probability \(p \), -1 with probability \(q \) and 0 otherwise, where \(0 \leq p,q \leq 1 \) and \(p + q \leq 1 \). (In the above example, \(p = 3/10, q = 1/10 \).) We want to calculate, given \(n,p,q \), an array of probabilities: for all \(k \) with \(-n \leq k \leq n \), compute the probability that \(\sum_{i=1}^{n} X_i = k \). Your algorithm should be polynomial-time in \(n \). Assume
arithmetic operations are constant time. (6 pts. correct, poly-time alg., 4 pts efficiency; my best time is $O(n \log n)$.)

Implementation: Integer Multiplication Implement the $O(n^{\log 3})$ divide-and-conquer algorithm for integer multiplication from class, but with a threshold, below which naive “gradeschool” multiplication is used. Use an array of digits to represent inputs and outputs. Experimentally determine the optimal threshold. For what values of n do you see an improvement in the time using divide-and-conquer, both using no threshold and using the optimal threshold?