Modulo

Remainder when dividing two positive integers (mod as an operator):

- \(n = m \cdot \lfloor n/m \rfloor + (n \mod m) \)

Extended to negative numbers (\(y \neq 0 \))

- \(x \mod y = x - y \cdot \lfloor x/y \rfloor \)

Equivalence classes (mod as an equivalence relation)

- \(a \equiv b \mod m \) iff \(a - b \) is a multiple of \(m \)

Residue classes mod \(m \)

- \(m \) of them
 - All \(a \) such that \(a \equiv 0 \mod m \)
 - All \(a \) such that \(a \equiv 1 \mod m \)
 - \(\ldots \)
 - All \(a \) such that \(a \equiv m-1 \mod m \)

Modulo Arithmetic

If:

- \(x = x' \mod m \)
- \(y = y' \mod m \)

Then

- \(x + y \equiv x' + y' \mod m \)
- \(x - y \equiv x' - y' \mod m \)
- \(xy \equiv x'y' \mod m \)

Applications

- Casting out 9’s

\[
\begin{array}{c|c|c}
532 & + & 656 \\
327 & 55 & 17985 \\
95 & 1273 & \\
\end{array}
\]

gcd, lcm, \(\Phi \)

Greatest Common Divisor (gcd)

- \(\gcd(m, n) \) is the largest integer \(k \) that divides integers \(m \) and \(n \)
 - \(k \mid m \) and \(k \mid n \)
- \(\gcd(m, n) \) is a linear combination (with integer coefficients) of \(m \) and \(n \)
 - \(\exists i, j \in \mathbb{Z}: \gcd(m, n) = im + jn \)
- To calculate \(\gcd(m, n) \)
 - Compute prime factorization of \(m \) and \(n \)
 - \(\gcd(m, n) = \text{common prime factors (and powers) of } m \text{ and } n \)
- Euclid’s algorithm
 - int \(\gcd(m, n) \)
 - if \((n == 0) \) return \(m \)
 - else return \(\gcd(n, m \mod n) \)

Least Common Multiple (lcm)

- \(\text{lcm}(m, n) \) is the smallest integer \(k \) such that integers \(m \) and \(n \) divide \(k \)
 - \(m \mid k \) and \(n \mid k \)
- To calculate \(\text{lcm}(m, n) \)
 - Compute prime factorizations of \(m \) and \(n \)
 - \(\text{lcm}(m, n) = \text{union of prime factors (and powers) of } m \text{ and } n \)

\(\Phi \) (Euler function)

- \(\Phi(n) \) = the number of positive integers \(k \leq n \) such that \(k \perp n \) \((\gcd(k, n) = 1) \)
Properties of Φ

If n is prime
- $\Phi(n) = n - 1$

If n is product of two distinct primes, p and q
- $\Phi(n) = (p-1)(q-1)$
- Number not relatively prime = $q + p - 1$.
- $pq - (q + p - 1) = (p-1)(q-1)$

Call the $\Phi(n)$ numbers relatively prime to n units
- Given a unit of n, $a: a^{\Phi(n)} \equiv 1 \pmod{n}$

Thus, given two distinct primes, p and q
- $m \perp pq \rightarrow m^{(p-1)(q-1)} \equiv 1 \pmod{pq}$

Cryptography

Definitions:
- Plaintext: message being encoded
- Ciphertext: encoded plaintext
- Key: parameter to crypto algorithms
 - $C = E(P, K_E)$
 - $P = D(C, K_D)$

Simple cipher (Caesar cipher):
- $K_E = K_D$ = permutation from letters to letters
 - $A \rightarrow X$
 - $B \rightarrow L$
 - $Z \rightarrow R$
- $E = \text{apply } K_E$ to each character in plaintext
- $D = \text{apply } K_E^{-1}$ to each character in ciphertext
- Weakness: letter frequencies

Unbreakable Code

One-time pad
- $K_E = K_D$ = long stream of random bytes
 - Really random, not pseudo-random
- $E(P, K_E)$
 - for $i = 1$ to length(P)
 - $C[i] = P[i] \text{ XOR } K_E[i]$
- $D = E$

Alice sends message to Bob
- Uses secret one-time pad
 - Encrypts P
 - Destroys P and one-time pad

Bob decrypts
- Using one-time pad

Alternative encryption (by-hand)
- Modular arithmetic
- Weakness
 - Key must be as long as plaintext
 - Key must be used only once
 - Key must be truly random

Reusing Key

Problem
- If plaintext and ciphertext are both known, key can be reverse-engineered
 - $K_E[i] = P[i] \text{ XOR } C[i]$
- How to know plaintext if it is encrypted?
 - Cause specific plaintext to be sent
 - British would mine specific areas in WWII so that the Germans would send
 message including “minen” and location.
Trapdoor Functions

Trapdoor function: Given the output of a function, the input is hard to compute

Discrete logarithms
- Consider computing a power of a number modulo a prime
 - 3^t mod 7
 - Easy to compute
- Consider the reverse problem, given 3^t mod 7, what is t?
 - Believed to be difficult to compute for large numbers
 - t is the discrete logarithm

Can be used to re-use keys
- Instead of encrypting with K, pick random b and encrypt with \(L = b^K \mod p \) (known prime p)
- Send C as well as b
- If attacker knows plaintext, can figure out L, but that doesn’t help figure out K

Cryptography without a Shared Key

Symmetric Key Exchange (Diffie-Hellman)
- Alice and Bob don’t have a shared key, but want to exchange information such that they know a shared key but attackers don’t.
- Alice and Bob agree on prime p and base z (1 < x < p-1)
 - Standard numbers, perhaps
- Alice picks a random number a (1 < a < p-1), computes \(A = z^a \mod p \)
- Bob picks a random number b (1 < b < p-1), computes \(B = z^b \mod p \)
- Alice and Bob exchange A and B
 - Everyone knows A, B, p, and z
- Alice computes \(K = B^a \mod p \)
- Bob computes \(K = A^b \mod p \)

- \(B^a \equiv (z^b)^a \equiv z^{ab} \equiv (z^a)^b \equiv A \mod p \)

Weakness/strength:
- If n can be factored, private key can be easily recreated

Public Key Cryptography (RSA)
- Alice has a public key, KE, used for encrypting messages to her
- She has a secret private key, KD, used for decryption
- Creating pair of keys:
 - Choose two large random primes p, and q
 - Compute n = pq
 - Compute \(\phi(n) = (p-1)(q-1) \)
 - Choose an integer 1 < e < \(\phi(n) \) such that e \(\perp \phi(n) \)
 - Compute d such that de \(\equiv 1 \mod \phi(n) \)
- \(K_E = (n, e), K_D = (n, d) \)
- Choose P with 1 ≤ P < n, and P \(\perp n \)
- Encrypt: \(C = P^e \mod n \)
- Decrypt: \(P = C^d \mod n \)
 - \(C^e \equiv (P^d)^e \equiv P^d \mod n \)
 - Since de \(\equiv 1 \mod \phi(n) \), de \(\equiv 1 + i \phi(n) \)
 - So, \(P^d \equiv P^{1+i\phi(n)} \equiv P^{1+ir}\Phi(n) \equiv P(\Phi^{(r)}(n) \mod n) \)
 - But, \(\Phi^{(r)}(n) \equiv 1 \mod n \), so \(C^e \equiv P \mod n \)
- Weakness/strength:
 - If n can be factored, private key can be easily recreated