Logic

Propositional Logic
- Deals with individual statements that have true/false values
 - no in-between
- Corresponds 1-1 with Boolean Functions and Combinational Circuits

(First-order) Predicate Logic
- Can actually talk about groups: For all, There exists,
- Covered next lecture

Propositional Logic Formulas

Well-formed formulas (wff)
- Any lower-case letter is a wff (atomic formula)
 - p
 - q
 - r
 - ...
- If \(\Phi \) is a wff, then \(\neg \Phi \) is a wff
- If \(\Phi \) and \(\Pi \) are wffs, then:
 - \((\Phi \vee \Pi) \) is a wff
 - \((\Phi \wedge \Pi) \) is a wff
 - \((\Phi \rightarrow \Pi) \) is a wff
 - \((\Phi \leftrightarrow \Pi) \) is a wff

As a shortcut, we sometimes omit unneeded parentheses

Simplifying a Boolean Function

Example
- \(\neg (p \wedge q) \vee (p \vee q) \)
Formula

An atomic formula (p) represents some statement that has a truth value:
- Either p is true, or it’s negation is true.
 - tertium non datur
- It’s either true or false (bivalent)

Example English propositions:
- It will rain tomorrow
- The sky is blue
- The sky is fluorescent orange
- The program will finish in less than 3 minutes

The truth value of a complex formula can be determined from the truth values of the atomic formulas within.

Equivalent Formulas

Formulas that differ syntactically are said to have different forms:
- Formulas with different forms are equivalent if their truth tables are the same.
- Example:

Implication

Implication (also called if-then):
- p → q
- For the formula to be true, if p is true, then q can’t be false.
- If p is false, the formula is true
- Example:
 - If it is raining tomorrow, the driveway will get wet
Implication

Common English forms

- *If* \(p \) *then* \(q \)
 - If it is raining, then the driveway will get wet

- \(p \) *only if* \(q \)
 - The team will play in the playoffs *only if* the team reaches the semifinals

- \(p \) *if and only if* \(q \)
 - The team will be the champion *if and only if* the team wins the championship game

- \(p \) *is necessary for* \(q \)
 - A necessary condition for \(q \) is \(p \)
 - Reaching the semifinals is necessary for playing in the playoffs

Relatives of Implication

Given \(p \rightarrow q \)

- Inverse: \(\neg p \rightarrow \neg q \)

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \rightarrow q)</th>
<th>(\neg p \rightarrow \neg q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td>(f)</td>
<td>(t)</td>
<td>(t)</td>
</tr>
<tr>
<td>(f)</td>
<td>(t)</td>
<td>(t)</td>
<td>(f)</td>
</tr>
<tr>
<td>(t)</td>
<td>(f)</td>
<td>(f)</td>
<td>(f)</td>
</tr>
<tr>
<td>(t)</td>
<td>(t)</td>
<td>(t)</td>
<td>(t)</td>
</tr>
</tbody>
</table>

- Converse: \(q \rightarrow p \)

Anything can be Proved from a Contradiction

If we can establish:

- A contradiction implies anything because:

 - \(\neg \rightarrow q \)
 - \(\neg \text{contradiction} \)
 - Therefore, \(q \)
Proof by Contradiction

To prove \(q \) by contradiction

- Assume \(\neg q \)
- Show this leads to a contradiction

Example
- Prove that there is no largest integer \(p \)
- Assume, to the contrary that \(\neg p \)
- Then, \(\text{formula that follows from } p \)
- Now, \(p \land \neg p \)

Argument forms

Classical logic uses syllogisms

- Two premises
- One conclusion

- \textit{Modus ponens}
 - If it rained, the driveway got wet
 - It rained
 - Therefore, the driveway got wet

- \textit{Modus tollens}
 - If it rained, the driveway got wet
 - The driveway didn’t get wet
 - Therefore, it didn’t rain

Argument Forms

\begin{itemize}
 \item Generalization
 \begin{itemize}
 \item \(p \)
 \item Therefore, \(p \lor q \)
 \end{itemize}
 \item Specialization
 \begin{itemize}
 \item \(p \land q \)
 \item Therefore, \(p \)
 \end{itemize}
 \item Conjunction
 \begin{itemize}
 \item \(p \)
 \item \(q \)
 \item Therefore, \(p \land q \)
 \end{itemize}
 \item Elimination
 \begin{itemize}
 \item \(p \lor q \)
 \item \(\neg q \)
 \item Therefore, \(p \)
 \end{itemize}
 \item Transitivity
 \begin{itemize}
 \item \(p \rightarrow q \)
 \item \(q \rightarrow r \)
 \item Therefore, \(p \rightarrow r \)
 \end{itemize}
\end{itemize}
Algebraic Rules for Propositional Formulas

Equivalences between propositional formulas (similar to algebraic equivalences):

- Associative
- Distributive
- Idempotent
- Double negation
- DeMorgan’s
- Commutative
- Absorption
- Bound
- Negation