Today: Multicast routing

- Multicast service model
- Host interface
- Host-router interactions (IGMP)
- Multicast Routing
 - Distance Vector
 - Link State
 - Shared tree
- Limiters
 - Deployment issues
 - Inter-domain routing
 - Operational/Economic issues
Motivation

- Efficient delivery to multiple destinations (e.g. video broadcast)

- Network-layer support for one-to-many addressing
 - Publish/subscribe communications model
 - Don’t need to know destinations
IP Multicast service model

- Communications based on groups
 - Special IP addresses represent “multicast groups”
 - Anyone can join group to receive
 - Anyone can send to group
 » Sender need not be part of group
 - Dynamic group membership – can join and leave at will

- Unreliable datagram service
 - Extension to unicast IP
 - Group membership not visible to hosts
 - No synchronization

- Explicit scoping to limit spread of packets
Elements of IP Multicast

- Host interface
 - Application visible multicast API
 - Multicast addressing
 - Link-layer mapping

- Host-Router interface
 - IGMP

- Router-Router interface
 - Multicast routing protocols
Host interface

- Senders (not much new)
 - Set TTL on multicast packets to limit “scope”
 » Scope can be administratively limited on per-group basis
 - Send packets to *multicast address*, represents a group
 - Unreliable transport (no acknowledgements)

- Receivers (two new interfaces)
 - Join multicast group (group address)
 - Leave multicast group (group address)
 - Typically implemented as a socket option in most networking API
Multicast addressing

- Special address range:
 - Class D (3 MSBs set to 1) 224.0.01-239.255.255.255
 - Reserved by IANA for multicast
- Which address to use for a new group?
 - No standard
 - Global random selection
 - Per-domain addressing (MASC, GLOP)
- Which address to use to join an existing group?
 - No standard
 - Separate address distribution protocol (may use multicast)
Link-layer multicast

- Many link-layers protocols have multicast capability
 - Ethernet, FDDI

- Translate IP Multicast address into LL address
 - E.g. Map 28 bits of IP MC address in 23bit Ethernet MC addresses
 - Senders send and receive on link-layer MC addresses
 - Routers must listen on all possible LL MC addresses

- Not an issue for point-to-point links
Goal: communicate group membership between hosts and routers

Soft-state protocol
- Hosts explicitly inform their router about membership
- Must periodically refresh membership report
- Routers implicitly timeout groups that aren’t refreshed
- Why isn’t explicit “leave group” message sufficient?

Implemented in most of today’s routers and switches
How IGMP works (roughly)

- Router broadcasts *membership query* to 224.0.0.1 (all-systems group) with ttl=1
- Hosts start random timer (0-10 sec) for each group they have joined

- When a host’s timer expires for group G, send *membership report* to group G, with ttl=1
- When a member of G hears a report, they reset their timer for G
- Router times out groups that are not “refreshed” by some host’s report
Multicast routing

- Goal: build distribution tree for multicast packets
 - Efficient tree (ideally, shortest path)
 - Low join/leave latency

- Several approaches
 - Distance Vector/Link State
 » Leverage existing unicast routing protocols
 - Shared tree
 » Unicast/multicast hybrids
Multicast routing taxonomy

- Source-based tree
 - Separate shortest path tree for each source
 - Flood and prune (DVMRP, PIM-DM)
 - Send multicast traffic everywhere
 - Prune edges that are not actively subscribed to group
 - Link-state (MOSPF)
 - Routers flood groups they would like to receive
 - Compute shortest-path trees on demand

- Shared tree (CBT, PIM-SM)
 - Single distributed tree shared among all sources
 - Specify rendezvous point (RP) for group
 - Senders send packets to RP, receivers join at RP
 - RP multicasts to receivers; Fix-up tree for optimization
Source-based vs Shared

Source-based tree

- Efficient trees; low delay, even load
- Per-source state in routers (S,G)

Shared-tree

- Higher delay, skewed load
- Per-group state only (G)
Flood and Prune (DV)

- Extensions to unicast distance vector algorithm
- Goal
 - Multicast packets delivered along shortest-path tree from sender to members of the multicast group
 - Likely have different tree for different senders
- Distance Vector Multicast Routing (DVMRP) developed as a progression of algorithms
 - Reverse Path Flooding (RPF)
 - Reverse Path Broadcast (RPB)
 - Reverse Path Multicast (RPM)
Observation: Shortest-path multicast tree is subtree of shortest-path broadcast tree

Approach: Use shortest-path broadcast tree

Use reverse path to determine shortest path
 - Router forwards a packet from S iff received from the shortest-path link to S
 - Exactly what is in entry in forwarding table?
 - To reach S along shortest path, use link L
 - If received packet from S on L, it came along shortest path

How are packets forwarded?
 - Flooding – forward packets to multicast address out to all links except incoming link (hence reverse path flooding)
Example: Reverse Path Flooding

Forward packets on shortest path from X to S

Problem: Flooding causes duplicate packets to be sent on LANs
Solution: Reverse Path Broadcast (RPB)

- Flooding vs. broadcast
 - With flooding, a single packet can be sent along an individual link multiple times
 » Each router attached to link can potentially forward same packet
 - RPB sends a packet along a link at most once

- Approach: Define parent and child routers for each link
 - Relative to each link and each source S
 - Router is a parent for link if it has minimum path to S
 - All other routers on the link are children
 - Only parent router is allowed to forward multicast packets on link

- How to decide parent and children routers for link?
 - In routing updates; router determines if is parent
Example: Reverse Path Broadcasting

B not parent for S
Don’t forward
Reverse Path Multicast (RPM)

- Problem: Still **broadcasting** up to leaf networks
- Idea: Instead of actively building tree, use reports to actively prune tree
- Start with a full broadcast tree to all links (RPB),
- Prune (S,G) at leaf if it has no members
 - Send Non-Membership Report (NMR) to prev-hop for S
- If all children of router R prune (S,G)
 - Send NMR for (S,G) to parent of R
- Soft-state management (must refresh NMR or rejoin)
- New group member sends graft (anti-prune) message
Link State

- Use existing link-state routing algorithm (e.g. OSPF)
- Idea: include active groups in LSPs
 - Each router can compute shortest path tree from source to all destinations for any group
 - Trigger new flood on group membership change

- Performance issues
 - Expensive to precompute all (S,G) trees
 - Keep cache of trees and compute new trees on demand when new (S,G) packet arrives
 - Workload/topology dependant

- Best known example: MOSPF
Shared tree approaches

- Unicast packets to Rendezvous Point (RP), which multicasts packet on shared tree

- Tree construction
 - Receivers send join messages to RP
 - Intermediate routers install state to create per-group tree
 - Key advantage is routers only store O(G) state
 - Potential optimizations: reroute to source-specific trees for local group members or high data-rate sources
 - Example: CBT, PIM-SM

- Issues
 - Delay, fault tolerance, RP selection
IP Multicast today

- IP Multicast has generated 1000s of papers, but has not been widely deployed in the Internet…

- Why?
 - General deployment difficulties (Mbone)
 - Inter-domain multicast complexity
 - Economics of multi-source multicast
Multicast evolution

- How to deploy a new network-layer service?
 - Difficult to change router software
 - Difficult to change all routers
- Mbone (tunneling)
 - Special multicast routers (built from PCs/Workstations)
 - Construct virtual topology between them (overlay)
 - Run routing protocol over virtual topology
 - Virtual point-to-point links called **tunnels**
 - Multicast traffic encapsulated in IP datagrams
 - Multicast routers forward over tunnels according to computed virtual next-hop
Tunnelling

IP Header
dst=224.x.x.x
Data

Encapsulation

132.239.4.6

128.2.1.2
De-encapsulation

IP Header
dst=128.2.1.2
IP Header
dst=224.x.x.x
Data
Virtual overlay network

Real topology with tunnels

Virtual overlay topology
Mbone Pro/Con

- **Success story**
 - Multicast video to 20 sites in 1992
 - Easy to deploy, no explicit router support
 - Ran DVMRP and had 100s of routers

- **Drawbacks**
 - Manual tunnel creation/maintenance
 - Inefficient
 - No routing policy (single tree)
 - Why would an ISP deploy a new mbone node?
Inter-domain multicast routing

- Technical issues
 - How to exchange reachability information?
 - How to construct trees?
 - Who controls RP in shared tree?
- MBGP: reachability to multicast sources per prefix
- PIM-SM: shared tree multicast protocol
- MSDP: RP per group per AS, communication presence of group sources between RPs
- BGMP: alternative proposal, single shared tree with group addresses owned by individual ASs
Economic issues

- ISP router migration cycle
 - Can’t afford new routers on edge
- Domain independence
 - Do I want my customers MC controlled by an RP in a competitors domain?
 - Why run an RP for which I have no senders or receivers?
- Billing model
 - Inconsistent with input-rate-based billing
 - No group management (how big is group?)
- Group management
 - Who is in the group? Who can send? Security
- Network management
- Limited Multicast addresses
Summary

- Multicast service model
 - One-to-many, anonymous communication
 - Simple host interface
- Per-source tree routing
 - Efficient trees, S*G state explosion for large networks/groups
- Shared tree
 - More complex, fragile, hard to manage
 - Trees inefficient by as much as 2x
 - Only requires G state on routers
- Operational and Economic issues matter in deployment
- Killer app not found