Lecture 9: Midterm Review

CSE 120: Principles of Operating Systems
Alex C. Snoeren
Midterm

• Everything we’ve covered is fair game
 ◆ Readings, lectures, homework, and Nachos
 ◆ Yes, there may be Nachos code on the exam!

• Exam will be individual, closed book
 ◆ Leave books, notes, laptops, etc., at home or in your bag
 ◆ We’ll provide scrap paper should you need it
 ◆ Please don’t cheat, none of us will enjoy the results

• Barath will proctor the exam Tuesday
 ◆ Please sit every other seat when you arrive
Topics We’ve Covered

- OS modules, interfaces, and structures
- Architectural support for OSes
- Processes
- Threads
- Locks & Semaphores
- Monitors & Condition Variables
- Scheduling
- Deadlock
OS Modules and Interfaces

- Modules
 - OS services and abstractions
- Interfaces
 - Operations supported by components
Modules

- Processes
- Memory
- I/O
- Secondary storage
- Files
- Protection
- Account
- Command interpreter (shell)
Arch Support for OSes

- Types of architecture support
 - Manipulating privileged machine state
 - Generating and handling events
Privileged Instructions

● What are privileged instructions?
 ◆ Who gets to execute them?
 ◆ How does the CPU know whether they can be executed?
 ◆ Difference between user and kernel mode

● Why do they need to be privileged?

● What do they manipulate?
 ◆ Protected control registers
 ◆ Memory management
 ◆ I/O devices
Events

- Events
 - Synchronous: fault (exceptions), system calls
 - Asynchronous: interrupts, software interrupt
- What are faults, and how are they handled?
- What are system calls, and how are they handled?
- What are interrupts, and how are they handled?
 - How do I/O devices use interrupts?
- What is the difference between exceptions and interrupts?
Processes

- What is a process?
- What resource does it virtualize?
- What is the difference between a process and a program?
- What is contained in a process?
Process Data Structures

- Process Control Blocks (PCBs)
 - What information does it contain?
 - How is it used in a context switch?

- State queues
 - What are process states?
 - What is the process state graph?
 - When does a process change state?
 - How does the OS use queues to keep track of processes?
Process Manipulation

- What does CreateProcess on NT do?
- What does fork() on Unix do?
 - What does it mean for it to “return twice”?
- What does exec() on Unix do?
 - How is it different from fork?
- Why separate fork() and exec()?
Threads

- What is a thread?
 - What is the difference between a thread and a process?
 - How are they related?
- Why are threads useful?
- What is the difference between user-level and kernel-level threads?
 - What are the advantages/disadvantages of one over another?
Thread Implementation

- How are threads managed by the run-time system?
 - Thread control blocks, thread queues
 - How is this different from process management?
- What operations do threads support?
 - Fork, yield, sleep, etc.
 - What does thread yield do?
- What is a context switch?
- What is the difference between non-preemptive scheduling and preemptive thread scheduling?
 - Voluntary and involuntary context switches
Synchronization

- Why do we need synchronization?
 - Coordinate access to shared data structures
 - Coordinate thread/process execution

- What can happen to shared data structures if synchronization is not used?
 - Race condition
 - Corruption
 - Bank account example

- When are resources shared?
 - Global variables, static objects
 - Heap objects
Mutual Exclusion

- What is mutual exclusion?
- What is a critical section?
 - What guarantees do critical sections provide?
 - What are the requirements of critical sections?
 » Mutual exclusion
 » Progress
 » Bounded waiting (no starvation)
 » Performance
- How does mutual exclusion relate to critical sections?
- What are the mechanisms for building critical sections?
 - Locks, semaphores, monitors, condition variables
Locks

- What does Acquire do?
- What does Release do?
- What does it mean for Acquire/Release to be atomic?
- How can locks be implemented?
 - Spinlocks
 - Disable/enable interrupts
 - Blocking (Nachos)
- How does test-and-set work?
 - What kind of lock does it implement?
- What are the limitations of using spinlocks, interrupts?
 - Inefficient, interrupts turned off too long
Semaphores

- What is a semaphore?
 - What does Wait/P/Decrement do?
 - What does Signal/V/Increment do?
 - How does a semaphore differ from a spin lock?
 - What is the difference between a binary semaphore and a counting semaphore?
- When do threads block on semaphores?
- When are they woken up again?
- Using semaphores to solve synchronization problems
 - Readers/Writers problem
 - Bounded Buffers problem
Monitors

- What is a monitor?
 - Shared data
 - Procedures
 - Synchronization

- In what way does a monitor provide mutual exclusion?
 - To what extent is it provided?

- How does a monitor differ from a semaphore?

- How does a monitor differ from a lock?

- What kind of support do monitors require?
 - Language, run-time support
Condition Variables

- What is a condition variable used for?
 - Coordinating the execution of threads
 - Not mutual exclusion

- Operations
 - What are the semantics of Wait?
 - What are the semantics of Signal?
 - What are the semantics of Broadcast?

- How are condition variables different from semaphores?
Implementing Monitors

- What does the implementation of a monitor look like?
 - Shared data
 - Procedures
 - A lock for mutual exclusion to procedures (w/ a queue)
 - Queues for the condition variables

- What is the difference between Hoare and Mesa monitors?
 - Semantics of signal (whether the woken up waiter gets to run immediately or not)
 - What are their tradeoffs?
Locks and Condition Vars

- In Nachos, we don’t have monitors
- But we want to be able to use condition variables
- So we isolate condition variables and make them independent (not associated with a monitor)
- Instead, we have to associate them with a lock (mutex)
- Now, to use a condition variable…
 - Threads must first acquire the lock (mutex)
 - CV::Wait releases the lock before blocking, acquires it after waking up
Scheduling

- What kinds of scheduling is there?
 - Long-term scheduling
 - Short-term scheduling

- Components
 - Scheduler (dispatcher)

- When does scheduling happen?
 - Job changes state (e.g., waiting to running)
 - Interrupt, exception
 - Job creation, termination
Scheduling Goals

- Goals
 - Maximize CPU utilization
 - Maximize job throughput
 - Minimize turnaround time
 - Minimize waiting time
 - Minimize response time

- What is the goal of a batch system?
- What is the goal of an interactive system?
Starvation

- Starvation
 - Indefinite denial of a resource (CPU, lock)

- Causes
 - Side effect of scheduling
 - Side effect of synchronization

- Operating systems try to prevent starvation
Scheduling Algorithms

- What are the properties, advantages and disadvantages of the following scheduling algorithms?
 - First Come First Serve (FCFS)/First In First Out (FIFO)
 - Shortest Job First (SJF)
 - Priority
 - Round Robin
 - Multilevel feedback queues

- What scheduling algorithm does Unix use? Why?
Deadlock

- Deadlock happens when processes are waiting on each other and cannot make progress.

- What are the conditions for deadlock?
 - Mutual exclusion
 - Hold and wait
 - No preemption
 - Circular wait

- How to visualize, represent abstractly?
 - Resource allocation graph (RAG)
Dealing With Deadlock

There are four ways to deal with deadlock:

- **Ignore it**
 - How lucky do you feel?

- **Prevention**
 - Make it impossible for deadlock to happen

- **Avoidance**
 - Control allocation of resources

- **Detection and recovery**
 - Look for a cycle in dependencies
Banker’s Algorithm

- The Banker’s Algorithm is the classic approach to deadlock avoidance for resources with multiple units.

1. Assign a **credit limit** to each customer (process)
 - Maximum credit claim must be stated in advance.

2. Reject any request that leads to a **dangerous state**
 - A dangerous state is one where a sudden request by any customer for the full credit limit could lead to deadlock.
 - A recursive reduction procedure recognizes dangerous states.

3. In practice, the system must keep resource usage well below capacity to maintain a **resource surplus**
 - Rarely used in practice due to low resource utilization.
Deadlock Recovery

Once a deadlock is detected, we have two options...

1. Abort processes
 - Abort all deadlocked processes
 » Processes need start over again
 - Abort one process at a time until cycle is eliminated
 » System needs to rerun detection after each abort

2. Preempt resources (force their release)
 - Need to select process and resource to preempt
 - Need to rollback process to previous state
 - Need to prevent starvation
A Synchronization Exercise

- Event synchronization (e.g., Windows)
- Event::Wait blocks if and only if Event is **unsigaled**
- Event::Signal makes Event **signaled**, wakes up blocked threads
- Once signalled, an Event remains **signaled** until deleted
- Use locks and condition variables (e.g., as in Nachos)

```cpp
class Event {
    ...
    void Signal () {
        ...
    }
    void Wait () {
        ...
    }
}
```