For each of the algorithm problems, design as asymptotically efficient an algorithm as possible. Give a correctness argument (explanation, if it is relatively simple, or proof if not) and time analysis. You may use any well-known algorithm or data structure, or algorithm from the text or class, as a sub-routine without needing to provide details.

Base Conversion. Give an algorithm that inputs an array of \(n \) base 10 digits representing a positive integer in base 10 and outputs an array of bits representing the same integer in binary. Get as close as possible to linear time.

Dice pools: This problem arises from calculating success probabilities for certain role-playing games, where players roll dice in proportion to their character’s abilities, and each die is either a “Success”, a “Failure” or “Neutral”, and the outcome is determined by the number of successes minus the number of failures. (For example, in one game, dice take random values from 1 to 10, with 1 being a “Failure” and 8-10 being a “Success”.) Abstractly, the problem is: there are \(n \) independent random variables, \(X_1 ... X_n \). Each variable is +1 with probability \(p \), –1 with probability \(q \) and 0 otherwise, where \(0 \leq p, q \leq 1 \) and \(p + q \leq 1 \). (In the above example, \(p = \frac{3}{10}, q = \frac{1}{10} \).) We want to compute, given \(n \), an array of probabilities: for all \(k \) with \(-n \leq k \leq n \) compute the probability that \(\sum_{i=1}^{n} X_i = k \). Your algorithm should be polynomial-time in \(n \). Assume arithmetic operations are constant time. (6 pts. correct, poly-time alg., 4 pts efficiency; my best time is \(O(n \log n) \).)

Weighted Median, Problem 9-2, part c., p. 194

Merging lists: Consider the problem of merging \(k \) sorted lists with a total of \(n \) elements into a single sorted list. Show that in the comparison model, the complexity of this problem is \(\Theta(n \log k) \). (Note that \(k \) can be any value or function of \(n \); in particular, do not assume that it is constant. You can use the \(O(n \log n) \) lower bound for sorting without proof.)

Implementation: Integer Multiplication Implement the \(O(n \log^3 n) \) divide-and-conquer algorithm for integer multiplication, but with a threshold, below which naive “gradeschool” multiplication is used. Experimentally determine the optimal threshold. For what values of \(n \) do you see an improvement in the time using divide-and-conquer, both using no threshold and using the optimal threshold?