Recurrence Let $T(n)$ be the function given by the recursion: $T(n) = nT(\lfloor \sqrt{n} \rfloor)$ for $n > 1$ and $T(1) = 1$. Is $T(n) \in O(n^k)$ for some constant k, i.e. is T bounded by a polynomial in n? Prove your answer either way. (Note: logic and definition of O notation are more important than exact calculations for this problem.)

Yes, the function is polynomially bounded.

First proof method, change of variables. We give an exact calculation, when n is a power of 2, that it is itself a power of 2. We pick this kind of number, because the square root of a power of a power of 2 is also of the same form. If $n = 2^j$, $T(n) = T(2^j) = 2^j T(2^{j-1}) = 2^j (2^{j-1}) T(2^{j-2}) = \ldots = 2^j + 2^{j-1} + 2^{j-2} + \ldots + 1 = 2^{j+1}-1 = 1/2n^2$. Since for every n, there is a power of a power of 2 at most n^2, $(n’ = 2^{\log \log n})$ and $T(n)$ is non-decreasing, this gives an upper bound of $T(n) \leq T(n’) \leq 1/2(n’)^2 \leq 1/2n^2 \in O(n^4)$.

Second method: Induction. By trying a few values, we guess that $T(n)$ grows roughly as n^2. We then verify that guess: We prove by strong induction on n, that for every $n \geq 1$, $T(n) \leq n^2$. Since $T(1) = 1$, the base case holds. Let $k \geq 1$, and assume $T(n) \leq n^2$ for all $1 \leq n \leq k$. Then $T(k+1) = (k+1)T(\lfloor \sqrt{k+1} \rfloor)$. Applying the induction hypothesis to $\lfloor \sqrt{k+1} \rfloor$, $T(k+1) \leq (k+1)(\lfloor \sqrt{k+1} \rfloor)^2 \leq (k+1)(\sqrt{k+1}^2) = (k+1)^2$. So by induction, $T(n) \leq n^2$ for all n.

Reasoning about order Let $f(n)$ be a positive, integer-valued function on the natural numbers that is non-decreasing. Show that if $f(2n) \in O(f(n))$, then $f(n) \in O(n^k)$ for some constant k. Is the converse also always true?

First, if $f(2n) \in O(f(n))$, by definition of order, there are constants $n_0 > 0, c > 0$ so that for all $n > n_0$, $f(2n) \leq cf(n)$. (Note this is similar to the recurrence: $T(n) = cT(n/2)$, and the proof that f is polynomial is just another proof of the Master Theorem). We’ll first prove that f is polynomial on powers of 2, then use monotonicity to conclude the same thing for other values. Without loss of generality, assume $c > 1$ and that n_0 is a power of 2, $n_0 = 2^i$. Let $c’ = f(n_0)/c^i$. We’ll prove by induction that for $j \geq i$ for $n = 2^j$, $f(n) = f(2^j) \leq c’c^j = c’(2^j \log^c c) = c’n^\log^c c$. The claim is true for $j = i$, by definition of $c’$. If $f(2^j) \leq c’ c^j$, then $f(2^{j+1}) = f(2^{j+1}) \leq cf(2^j) \leq c’c c^{j+1}$, so the claim holds inductively.

Then for any $n \geq n_0$, let $n’ = 2^{\log n}$ be the next power of 2; $n \leq n’ \leq 2n$, so $f(n) \leq f(n’) \leq c’(n’)^{\log c} \leq c’(2n)^{\log c} = c’cn^{\log c}$. Picking n_0 and $c’$ in the definition of O, we have $f(n) \in O(n^{\log c})$.

1
The converse isn’t always true. Let’s use a counter-example that came up in problem 1, the first solution. Let \(f(n) = 2^{2^{\log \log n}} \). Then \(f(n) \leq 2^{2^{\log \log n} + 1} = 2^{\log n} = n^2 \), so \(f(n) \in O(n^2) \). However, if \(n = 2^d \), \(f(n) = n \) and \(f(2n) \geq n^2 \). Since a gap of \(n \) occurs for infinitely many \(n \), \(f(2n) \) is NOT in \(O(f(n)) \).

Binary Tree Isomorphism Consider the following recursive algorithm, which makes the following assumptions. \(x, y \) are the roots of two binary trees, \(T_x \) and \(T_y \). \(\text{Left}(z) \) is a pointer to the left child of node \(z \) in either tree, and \(\text{Right}(z) \) points to the right child. If the node doesn’t have a left or right child, the pointer returns “NIL”. Each node \(z \) also has a field \(\text{Size}(z) \) which returns the number of nodes in the sub-tree rooted at \(z \). \(\text{Size}(\text{NIL}) \) is defined to be 0.

The algorithm \(\text{SameTree}(x, y) \) returns a boolean answer that says whether or not the trees rooted at \(x \) and \(y \) are isomorphic, i.e., the same if you ignore the difference between left and right pointers.

1. Program: \(\text{SameTree}(x, y: \text{Nodes}): \text{Boolean}; \)
2. IF \(\text{Size}(x) \neq \text{Size}(y) \) THEN return \text{False}; halt.
3. IF \(x = \text{NIL} \) THEN return \text{True}; halt.
4. IF (\(\text{SameTree} (\text{Left}(x), \text{Left}(y)) \) AND \(\text{SameTree}(\text{Right}(x), \text{Right}(y)) \)) OR (\(\text{SameTree}(\text{Right}(x), \text{Left}(y)) \) AND \(\text{SameTree}(\text{Left}(x), \text{Right}(y)) \)) THEN return \text{True}; halt.
5. Return \text{False}; halt.

Give a time analysis (up to order) for this algorithm, giving the worst-case time complexity \(T(n) \) when both trees are of size \(n \). (Hint: consider the case when the trees rooted at \(x \) and \(y \) are both complete balanced trees with \(n \) nodes. This gives the intuition, but not a proof. To get a complete proof, you then need either a clever insight or to use an inductive argument. If you use a proof by induction, be careful about \(O \) notation. The constants involved need to be the same at all levels of the induction, i.e., they cannot change between induction hypothesis and conclusion. Again, logic is more important than calculation.)

The inductive argument: If the trees are of different sizes, the algorithm immediately returns \text{False}. So assume \(T_1 \) and \(T_2 \) are both size \(n \). If the sub-trees in \(T_1 \) are of different sizes \(l \) and \(r = n - l - 1 \) in \(T_1 \), then we at most do one recursive call (that doesn’t immediately return false) of size \(l \) and one of size \(r \). The rest of the algorithm is constant time. So in this case we have \(T(n) \leq T(l) + T(n - l - 1) + O(1) \). Similarly if the subtrees in \(T_2 \) are of different sizes. Otherwise, if all sub-trees are of the same size, that size is \(n - 1/2 \) and we have \(T(n) = 4T(n - 1/2) + O(1) \). We prove
by induction that \(T(n) \leq cn^2 \), where \(c \) is the maximum of \(T(1) \), and the hidden constant in the \(O(1) \).

By choice of \(c \), this is true in the base case \(n = 1 \).

Assume it is true for all \(1 \leq n \leq k \), and let \(n = k + 1 \). Then in the first case, we can apply the induction hypothesis to \(l, v \) to get \(T(n) \leq cl^2 + c(n - l - 1)^2 + c \leq cnl + cn(n - l - 1) + cn = cn^2 \). (To do the middle inequality, we use: \(l \leq n, n - l - 1 \leq n, \) and \(1 \leq n \)). In the second case, applying it to \(n - 1/2 = k/2 \), \(T(n) \leq 4c(n-1/2)^2 + c = c(n-1)^2 + c = cn^2 - 2nc + 2c \leq cn^2 \) (since \(n \geq 1 \)). So in all cases \(T(n) \leq c(n^2) \).

Thus, by induction, \(T(n) \leq cn^2 \) for all \(n \), so \(T(n) \in O(n^2) \).

The clever insight: Besides calling itself recursively, the rest of the algorithm is \(O(1) \), so the total time is of the same order as the total number of recursive calls. We only call the algorithm at \(u \in T, v \in T' \) recursively when we are making a call to \(p(u), p(v) \), where \(p, p' \) represent the parent in \(T, T' \) respectively. Thus, we only make one call for each such pair (if we made two calls to a pair, we would have made two calls to their parents, and hence two to their grandparents, etc., so we would have run the algorithm at the roots twice), and there are \(n^2 \) such pairs, so the total number of calls is \(O(n^2) \).

Binary Conversion(15 points): Say that your input is a decimal representation of a number, given as an array of digits, \(X[1..n], \ldots X[0] \), representing \(X = \sum_{I=0}^{I=n-1} X[I]10^I \). Describe an algorithm to find the binary representation of \(X \) that runs in time \(O(n^2) \).

The main strategy we’ll use is: We can tell whether a decimal number is even or odd by looking at the least significant digit. We can then record this as the least significant bit. By themselves the other bits in binary represent \(x \text{div} 2 \), so we divide by 2 and repeat.

To use this strategy, we’ll need to see how long it takes to divide numbers. Fortunately we only need to divide by 2, not a general division algorithm. In fact, if we use the long division algorithm from grade school, we see that we only need one digit carry to divide by a single digit number like 2. Each step then becomes divide an at most 2 digit number by a one digit number, subtract the product of two one digit numbers from a two digit number, and use the resulting carry as the first digit for the next operation, bringing down one digit of the input string. So the total work of long division by 2 is \(O(n) \), where \(n \) is the number of digits in the number we are halving. We can think of the long division algorithm as given to us as a procedure \(LDiv2 \) that takes an input \(X \) as its array of \(n \) single digits, and returns \(X \text{div} 2 \) expressed in decimal as its array of at most \(n \) single digits. Then our binary conversion algorithm is: Convert(\(X[0..n-1] \): array of digits): array of bits
1. Initialize $BX[0..4n]$ array of bits.
2. $I \leftarrow 0$ \{a pointer to which bit we are computing\}
3. Until $I > 4n$ do:
4. begin;
5. $BX[I] \leftarrow X[0] \div 2$;
6. $X \leftarrow LDiv2[X]$;
7. $I++$;
8. end;
9. Return BX (possibly removing initial 0’s, if you want).

A few things need explaining. First, why did we initialize $4n$ bits in BX? This is because $10 < 16 = 2^4$, so an n digit number X is at most $10^n < 2^{4n}$, so the length of X in binary is at most 4 times its length in decimal. Thus, the main loop executes $O(n)$ times, and each time it calls the $O(n)$ time operation $LDiv2$. Since $X[0]$ is just a single digit, we can take $X[0] \div 2$ in $O(1)$ time, and so the rest of the loop is $O(1)$. Thus, the inside of the loop is $O(n)$, and we repeat it $4n$ times, so the total time is $O(n^2)$. $4n$ is an overestimate on the number of bits required, so we could then go back and decrease the dimension of the array until we see a bit with value 1. This would be an additional $O(n)$ time, which would not change the $O(n^2)$ total complexity.

Implementing Base Conversion. Implement the above algorithm, and test it on many random n bit strings for $n = 128, n = 256, n = 512, n = 1024, n = 2048, n = 4096, n = 8192, n = 16384, and $n = 32768$. Plot time vs. input size on a log vs. log curve. Does the algorithm’s observed time fit the analysis? Why or why not?

I can’t give a real model solution here, but the results for last year were that for most implementations, the observed times seem to fit the asymptotic analysis quite well. I thought there might be some cache misses causing overhead in some algorithms, but evidently cache sizes are large enough for this not to be an issue.