What is Computer Architecture?

- Hardware Designer
 - thinks about circuits, components, timing, functionality, ease of debugging
 - “construction engineer”

- Computer Architect
 - thinks about high-level components, how they fit together, how they work together to deliver performance.
 - “building architect”

Why do I care?

- You may actually do computer architecture someday
- You may actually care about software performance someday
 - The ability of application programs, compilers, operating systems, etc. to deliver performance depends critically on an understanding of the underlying computer organization.
 - That becomes more true every year.
 - Computer architectures become more difficult to understand every year.

Which is faster?

```c
for (i=0; i<N; i=i+1)
    for (j=0; j<N; j=j+1) {
        r = 0;
        for (k=0; k<N; k=k+1)
            r = r + y[i][k] * z[k][j];
        x[i][j] = r;
    }
```

```c
for (jj=0; jj<N; jj=jj+B)
    for (kk=0; kk<N; kk=kk+B)
        for (i=0; i<N; i=i+1) {
            for (j=jj; j<min(jj+B-1,N); j=j+1)
                r = 0;
                for (k=kk; k<min(kk+B-1,N); k=k+1)
                    r = r + y[i][k] * z[k][j];
                x[i][j] = x[i][j] + r;
        }
```
Which is faster?

load R1, addr1
store R1, addr2
add R0, R2 -> R3
subtract R4, R3 -> R5
add R0, R6 -> R7
store R7, addr3

load R1, addr1
add R0, R2 -> R3
add R0, R6 -> R7
subtract R4, R3 -> R5
store R7, addr3

Which is faster?

loop1: add ...
load ...
add ...
bne R1, loop1
loop2: add ...
load ...
bne R2, loop2

case 1:
load R1, addr1
add R0, R2 -> R3
add R0, R6 -> R7
subtract R4, R3 -> R5
load R7, addr3

Case 2:
load R1, addr1
add R0, R2 -> R3
add R0, R6 -> R7
subtract R4, R3 -> R5
store R7, addr3

Administration

• Instructor -- Dr. Dean Tullsen
• Who are you?
• TAs:
 – Chris Roedel
 – Richard Mahler
• grading
• integrity
• the course workload

What is Computer Architecture?

Computer Architecture = Machine Organization + Instruction Set Architecture

What the machine looks like

How you talk to the machine
How to Speak Computer

High Level Language Program

Compiler

Assembly Language Program

Assembler

Machine Language Program

Machine Interpretation

Control Signal Spec

ALUOP[0:3] <= InstReg[9:11] & MASK

c is the agreed-upon interface between all the software that runs on the machine and the hardware that executes it.

The Instruction Set Architecture

• that part of the architecture that is visible to the programmer
 – opcodes (available instructions)
 – number and types of registers
 – instruction formats
 – storage access, addressing modes
 – exceptional conditions

The Instruction Execution Cycle

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor instruction
Key ISA decisions

- operations
 - how many?
 - which ones
- operands
 - how many?
 - location
 - types
 - how to specify?
- instruction format
 - size
 - how many formats?

Examples of ISAs

- Alpha AXP
- Intel 80x86/pentium
- VAX
- MIPS
- SPARC
- IBM 360
- Intel IA-64 (Itanium)
- PowerPC

Computer Organization

- Once you have decided on an ISA, you must decide how to design the hardware to execute those programs written in the ISA as fast as possible (or as cheaply as possible, or using as little power as possible, ...).
- This must be done every time a new implementation of the architecture is released, with typically very different technological constraints.

The Challenge of Computer Architecture

- The industry changes faster than any other.
- The ground rules change every year.
 - new problems
 - new opportunities
 - different tradeoffs
- It’s “all” about making programs run faster than the next guy’s machine.
The five classic components of computers

Computer
- Control
- Memory
- Datapath
- Input
- Output

Course Outline
I. Instruction Set Architecture
II. Computer System Performance and Performance Metrics
III. Computer Arithmetic and Number Systems
IV. CPU Architecture
V. Pipelining
VI. Superscalars
VII. The Memory/Cache Hierarchy
VIII. Parallel Machines

What you can expect to get out of this class
- to become conversant with computer architecture terms and concepts.
- to understand fundamental concepts in computer architecture and how they impact computer and application performance.
- to be able to read and evaluate architectural descriptions of even today’s most complex processors.
- to gain experience designing a working CPU completely from scratch.
- to learn experimental techniques used to evaluate advanced architectural ideas.

Key Points
- High-performance software requires a deep understanding of the underlying machine organization.
- The instruction set architecture defines how software is allowed to use the processor. Multiple computers with vastly different organizations and performance can share an ISA.
- Most every component in a computer system falls into one of five categories.