CSE 101 Calibration Homework (Homework 0)
Fall, 2004
Background, (Order and Recurrence Relations, simple algorithms)
For Practice, Not to be handed in

Analyzing algorithms, 10 pts. Assume proc(I) is an algorithm that takes \(\Theta(I) \) time and does not change \(I \). What are the orders of the running times of the following two algorithms?

Alg1(n)

1. begin;
2. \(I \leftarrow 1; \)
3. While \(I \leq n \) do:
 4. begin;
 5. proc(I)
 6. \(I++ \)
 7. end;
8. end;

Alg2(n)

1. begin;
2. \(I \leftarrow 1; \)
3. While \(I \leq n \) do:
 4. begin;
 5. proc(I)
 6. \(I \leftarrow 2 * I \)
 7. end;
8. end;

Order Notation, 5 pts. each Is \(4^{\log n} \in O(n^2) \)? Why or why not? (When unspecified, logs are base 2).
Is \(\log(n!) \in \Omega(n \log n) \)? Why or why not?
Is \(4^n \in O(2^n) \)? Why or why not?
Is \(n + (n - 1) + (n - 2) + ... + 1 \in O(n) \)? Why or why not?

Triangles(20 points) Let \(G \) be an undirected graph with nodes \(v_1, v_n \). The adjacency matrix representation for \(G \) is the \(n \times n \) matrix \(M \) given by:
\(M_{i,j} = 1 \) if there is an edge from \(v_i \) to \(v_j \), and \(M_{i,j} = 0 \) otherwise. A triangle is a set \(\{v_i, v_j, v_k\} \) of 3 distinct vertices so that there is an edge
from \(v_i \) to \(v_j \), another from \(v_j \) to \(v_k \) and a third from \(v_k \) to \(v_i \). Give and analyze an algorithm for deciding whether a graph has a triangle in it, where the input graph is given by its adjacency matrix representation. Analyze your algorithm’s worst-case performance first in terms of just the number of nodes \(n \) of the graph, then in terms of \(n \) and the number of edges \(m \) of the graph. Your algorithm should be faster when \(m << n^2 \).

Binary Conversion (10 points): Consider the following algorithm to covert a decimal number to binary. More precisely, the input is a decimal representation of a number, given as an array of digits, \(D[n-1],...D[0] \), representing \(X = \sum_{i=0}^{n-1} D[i]10^i \). The output should be an array of bits \(B[n'-1]...B[0] \) so that \(X = \sum_{i=0}^{n'-1} B[i]2^i \).

The following algorithm uses a “long division by two” algorithm \(LDIV \) that takes linear time \(O(n) \) to compute the decimal representation of \(X \text{div} 2 \), given \(X \) in decimal.

The binary conversion algorithm is: \(\text{Convert}(D[0..n-1]: \text{array of digits}) \):

array of bits

1. Initialize \(B[0..4n] \) array of bits.
2. \(I \leftarrow 0 \) \{a pointer to which bit we are computing\}
3. While \(I \leq 4n \) do:
 4. begin;
 5. \(B[I] \leftarrow D[0] \text{mod} 2; \)
 6. \(D \leftarrow LDIV[D]; \)
 7. \(I++; \)
 8. end;
9. Return \(B \) (possibly removing initial 0’s, if you want).

Prove that this algorithm is correct, and give a time analysis in terms of the number \(n \) of digits.

Summing triples (20 points) Let \(A[1,...n] \) be an array of positive integers.
A *summing triple* in \(A \) is 3 distinct indices \(1 \leq i, j, k \leq n \) so that \(A[i] + A[j] = A[k] \). Give and analyze an algorithm that, given \(A \), determines whether there is any summing triple in \(A \). Try to be better than \(O(n^3) \).