(1) (a) (4 points) Let T be the root node of a binary tree with n nodes. Each node x has pointers $left(x)$ and $right(x)$ to its children (these pointers can be NIL). Assume also that each node x has an integer value $value(x)$. Write a recursive procedure for computing the sum of all the values in the tree rooted at T.

Solution:

integer Sum(T)
if T = NIL, return 0
return Sum(left(T)) + Sum(right(T)) + value(T)

(b) (3 points) Assume the tree is perfectly balanced: that is, for every node x in T, the left subtree of x has exactly the same size as the right subtree of x. Write a recurrence for the running time of your procedure in part (a) and solve this recurrence (in Θ-notation). You can assume that addition takes constant time.

Solution: $A(n) = 2A((n-1)/2) + O(1)$. By the Master Theorem, we get $A(n) = \Theta(n)$.

Note: if you’re worried about applying the Master Theorem to $A((n-1)/2$ instead of $A(n/2)$, notice that $A(n) \leq A(n/2) + O(1)$ and $A(n) \geq A(n/2.1) + O(1)$ whenever n gets big enough (i.e. greater than 21).

(c) (5 points) What is the worst-case running time (in Θ-notation) when we don’t assume that the tree is balanced? Prove your answer.

Solution: Notice that, in general, $A(n) = A(L) + A(R) + O(1)$, where L is the size of the left subtree and R is the size of the right subtree. Clearly, since we visit every node of the tree $A(n) = \Omega(n)$. Now, we prove by induction that $A(n) \leq cn$ for some constant c. Assume that $A(1) = d$ for some constant d. Then, in the base case, where $n = 1$, we want $A(0) = d \leq c$. Since we get to choose c, this is no problem. Now assume that $\forall i < n, A(n) \leq cn$. First of all, $L = n - R - 1$, so $A(n) = A(n - R - 1) + A(R) + O(1)$. The values $n - R - 1$ and R are each less than n, therefore, by the inductive hypothesis, $A(n) \leq c(n - R - 1) + cR + d'$ for some constant d'. Then $A(n) \leq cn - c + d'$. As long as $c \geq d'$, we’re done.
(2) Recall that a 3-coloring of a graph $G = (V,E)$ is a map $C : V \rightarrow \{ R, G, B \}$ such that any two adjacent nodes are colored differently. A 2-coloring is the same thing, except $C : V \rightarrow \{ R, G \}$. That is, there are only 2 possible colors.

(a) (6 points) Prove that a graph G has a 2-coloring if and only if G does not contain an odd-cycle (an odd-cycle is a cycle $(v_1,v_2), (v_2,v_3), \ldots, (v_k,v_1)$ where k is odd).

Solution: First, assume that G has an odd cycle of the form $(v_1,v_2), (v_2,v_3), \ldots, (v_k,v_1)$ where k is odd. If we try coloring v_1 red, then v_2 has to be green, v_3 has to be red, etc. In general, v_i will be red if i is odd and green if i is even. Hence v_k will be red, but so is v_1, so there is a problem. The same problem happens when you try to color v_1 green. So there is no 2-coloring.

Now assume that there is no odd cycle. Use the following procedure to color the graph (repeat it on every connected component):

(1) pick a node v_1 and color it red
(2) color every neighbor of v_1 green
(3) color every uncolored neighbor of these nodes red, etc.

In general, we color a set of uncolored nodes A_i in round (i) (if i is odd, we color them red; if even, we color them green). Either this procedure leads to a valid coloring of the graph or there is an odd-cycle. Notice that the nodes in A_i are all neighbors of nodes in A_{i-1}, but not neighbors of nodes in $A_1, A_2, \ldots, A_{i-2}$. Assume that at some point during this procedure, we get a conflict: that is, we color some node v red (or green) and one of its neighbors u red (or green) too. Then u and v must both be in A_i for some particular i. Consider two paths from v_1 to v and from v_1 to u that both have length $i - 1$. Let x be the last node that is on both of these paths. Then the paths from x to u and x to v have the same length as each other: say k. But this means there is a cycle of length $2k + 1$ using these two paths and the edge between u and v.

2
(b) (5 points) Describe how to modify the following code for DFS so that it returns “Yes” if G contains an odd-cycle and “No” if it doesn’t. That is, say what commands to add and where to insert them.

```plaintext
1 Frontier <- { x }
2 Visited[x] <- T
3 forall y != x
4 Visited[y] <- F
5 while Frontier not empty
6 y <- Pop(Frontier)
7 for z in Adj(y)
8 if Visited[z] = F
9 Push(Frontier, z)
10 Visited[z] <- T
```

Solution:

```plaintext
1 Frontier <- { x }
2 Visited[x] <- T
3 Time[x] <- T
4 forall y != x
5 Visited[y] <- F
6 while Frontier not empty
7 y <- Pop(Frontier)
8 for z in Adj(y)
9 if (Visited[z] = T AND Parent[y] != z AND
    AND (Time[y] + 1 - Time[z]) is odd)
   return ‘Yes’
10 if Visited[z] = F
   Parent[z] <- y
   Time[z] <- Time[y] + 1
11 Push(Frontier, z)
12 Visited[z] <- T
```

(c) (2 points) What is the worst-case running time of your algorithm?

Solution: We add only constant time operations, so the running time remains $O(n+m)$.

(3) Given a graph \(G = (V, E) \), a vertex-cover is a subset of nodes \(S \subset V \) such that for every edge \((x, y) \in E \), at least one of \(x \) and \(y \) is in \(S \). Our goal is to find a minimum vertex cover.

(a) (3 points) Describe an exhaustive search algorithm for vertex-cover. What is its running time?

Solution: A vertex cover is a subset of the nodes, so we simply go through all subsets of the nodes and check each one to see if it is a vertex cover. Whenever we find one that is, check to see if it is the smallest one we’ve seen so far. There are \(2^n \) subsets of \(V \) and it takes \(O(n^2) \) to check if a set is a vertex cover: \(O(n^22^n) \).

(b) (6 points) Give a backtracking algorithm that runs significantly faster than the exhaustive search algorithm.

Solution: One solution is to notice that \(S \) is a vertex cover if and only if \(V - S \) is an independent set. Therefore, if \(T \subset V \) is a maximum independent set, then \(V - T \) is a minimum vertex cover. We could just run the backtracking algorithm for maximum independent set and take the complement of the solution.

More directly, notice that if \(x \) and \(y \) are two adjacent nodes, then we have to take at least one of them in the vertex cover. Furthermore, if \(x \) is a node with no neighbors, then we don’t want to take it.

\[
\text{VC}(G = (V,E))
\]

\[
\text{if } |V| = 0 \text{ returnemptyset}
\]

Choose some vertex \(x \)

If \(x \) has no neighbors

\[
\text{return VC}(G-x)
\]

\[
S\text{_in} \gets \text{VC}(G-x) \cup \{x\}
\]

\[
S\text{_out} \gets \text{VC}(G-x-\text{adj}(x)) \cup \{\text{adj}(x)\}
\]

If \(\text{size}(S\text{_in}) > \text{size}(S\text{_out}) \) return \(S\text{_in} \)

return \(S\text{_out} \)

(c) (5 points) What is the running time of the algorithm in part (b)? Explain.

Solution: The running time of the maximum independent set algorithm is \(O(nF_n) \). So is the running time for the second algorithm since \(T(n) \leq T(n-1) + T(n-2) + O(n) \).