The Central Idea

- Even incomplete observations provide *some* information
- Globally observable process can be estimated by sequentially incorporating locally unobservable measurements
Why SCAAT?

- Improved Accuracy
 - Simultaneity Assumption avoided
 - Concurrent device autocalibration

- Improved estimation rates and latencies

Simultaneity Assumption

- Measurements collected sequentially
- but treated as simultaneous for computation.
Simultaneity (some typical numbers)

Let, at time of first observation
\[\tilde{x}(t) = [1,1] \, m \]

Then, at time of second observation
\[\tilde{x}(t + \tau_m) = [1.005,1.005] \, m \]

Consequently,
\[u_1 = -3.627e-3 \, m \, , \, u_2 = 3.828e-3 \, m \]

So, our position estimate would be
\[\tilde{x}(t + \tau_m) = [1.003,1.026] \, m \]
Estimation Rates and Latencies

- **Nyquist Criterion**
 Sampling Frequency \(> (2 \times \text{Target Motion BW}) \)

- **Virtual Environment Systems** - Visual feedback latency

SCAAT Helps

\[\tau_m \rightarrow \text{Measurement time per observation} \]

\[N \rightarrow \text{Number of Observations} \]

\[\tau_c(N) \rightarrow \text{Computation Time} \]

\[\text{Estimation Rate}, \quad \rho_e = \frac{1}{N\tau_m + \tau_c(N)} \]

Sequential Tracker
SCAAT tracker
Hybrid Systems and Multi-Sensor Data Fusion

Sequential Systems

SCAAT System

AutoCalibration

- New tracking estimate for each measurement
- Individual device imperfections segregated
SCAAD DEFINITIONS

Process Model

- Position-Velocity (PV) Model
- Accelerations $\tilde{\eta}[i]$ modeled as zero-mean white noise sources,
Model State and Transitions

- Inter-sample time \(\delta(t) \)
- Inter-state transition
 \[
 \dot{x}(t) = A(\delta t) \ddot{x}(t - \delta t) + \dot{\omega}(t)
 \]
- Complete target state
 - n-element internal state vector \((n = 12)\)
 \[
 \ddot{x}(t) = [x \ y \ z \ \dot{x} \ \dot{y} \ \dot{z} \ \dot{\phi} \ \dot{\theta} \ \dot{\psi} \ \phi \ \theta \ \psi]^T
 \]
 - 4-element external quaternion
 \[
 \ddot{x} = (\alpha_w, (\alpha_x, \alpha_y, \alpha_z))
 \]

State Transition Matrix \(A(\delta t) \)

- Implements
 \[
 \begin{align*}
 x(t) &= x(t - \delta t) + \dot{x}(t - \delta t) \delta t \\
 \dot{x}(t) &= \dot{x}(t - \delta t)
 \end{align*}
 \]
 \[
 A(\delta t) = \begin{bmatrix}
 1 & 0 & 0 & \delta t & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & \delta t & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & \delta t & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \delta t & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \delta t & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \delta t & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & \delta t \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
 \end{bmatrix}
 \]
Process Noise

- n dimensional process noise vector $\rightarrow \tilde{\omega}(t)$
- Normal distribution, zero-mean, white sequence

- Process noise covariance matrix

$$E\{\tilde{\omega}(t) \tilde{\omega}^T(t + \epsilon)\} = Q, \quad \epsilon = 0$$

$$= 0, \quad \epsilon \neq 0$$

Measurement Model

- Predict ideal, noise-free response of each sensor-source pair

- Distinguishes SCAAT Kalman filter from well-constrained Kalman filter
SCAAT Measurements

- Pure Sense → Single scalar measurements
- Practically → One multi-dimensional constraint per estimate

For sensor σ, m_{σ}–dimensional constraint.

Heuristic for Choosing SCAAT Measurements

- During each KF measurement update, observe single source-sensor pair
- Extract one geometric constraint per observation
Predicting Measurement from State

- For some sensor type σ,

 $\hat{z}_\sigma(t)$: Measurement Estimate Vector
 $\tilde{h}_\sigma()$: Measurement Function

 $$\hat{z}_\sigma(t) = \tilde{h}_\sigma(\bar{x}(t), \bar{\alpha}(t), \bar{b}(t), \bar{c}(t)) + \bar{\nu}_\sigma(t)$$

 $\bar{b}(t)$: Source parameter vector (beacon)
 $\bar{c}(t)$: Sensor parameter vector (camera)

Measurement Noise

- $\bar{\nu}_\sigma(t)$: m_σ – dimensional measurement noise vector
- $R_\sigma(t)$: $m_\sigma \times m_\sigma$ measurement noise covariance matrix

 $$E\{\bar{\nu}_\sigma(t) \bar{\nu}_\sigma^T(t + \epsilon)\} = R_\sigma(t), \quad \epsilon = 0$$

 $$= 0, \quad \epsilon \neq 0$$
Measurement Jacobian

- Signifies sensitivity of measurement

\[H_o(\ddot{x}(t), \ddot{a}(t), \ddot{b}(t), \ddot{c}(t)) [i, j] = \frac{\partial}{\partial \ddot{x}[j]} H_o(\ddot{x}(t), \ddot{a}(t), \ddot{b}(t), \ddot{c}(t))[i] \]

State Error Covariance

- Reflects filter’s estimate of its own uncertainty

- Error in filter’s state estimate,
 \[\hat{\epsilon}(t) = \ddot{x}(t) - \dot{x}(t) \]

- State Error Covariance,
 \[P(t) = E\{\hat{\epsilon}(t)\hat{\epsilon}^T(t)\} \]
SCAAT ALGORITHM

Time Update
- *a priori* state and error covariance

\[
\dot{x}^- = A(\delta t) \dot{x}(t - \delta t)
\]

\[
P^- = A(\delta t) P(t - \delta t) A^T(\delta t) + Q(\delta t)
\]
Time Update (Contd....)

\[P = \text{error covariance (density) before time update} \]

\[P^- = \text{error covariance (density) after time update} \]

\[= A(\delta t)P(t-\delta t)A^T(\delta t) + Q(\delta t) \]

Measurement Prediction

\[\hat{z} = \tilde{h}_o(\hat{x}^- (t), \hat{\alpha}^- (t), \tilde{b}(t), \tilde{c}(t)) \]

\[H = H_o(\hat{x}^- (t), \hat{\alpha}^- (t), \tilde{b}(t), \tilde{c}(t)) \]
Measurement Residual

\[\Delta \tilde{z} = \tilde{z}_\sigma(t) - \hat{z} \]

Kalman Gain

- Weights the residual in correction cycle

\[K = P^{-1} H^T (HP^{-1} H^T + R_\sigma(t))^{-1} \]
Update the State

- Compute \textit{a posteriori} state estimate
 \[
 \hat{x}(t) = \hat{x}^- + K \Delta \hat{z}
 \]

Update Error Covariance

- Compute \textit{a posteriori} error covariance.
 \[
 P(t) = (I - KH)P^-
 \]

\[
\text{state coordinate frame after time update}
\]

\[
\text{state coordinate frame after measurement correction}
\]

\[
\text{world coordinate frame}
\]

\[
P^- = \text{error covariance (density) after time update}
\]

\[
P = \text{error covariance (density) after measurement correction}
\]
Update External Quaternion

\[
\Delta \hat{\alpha} = \text{quaternion}(\hat{x}[\Delta \phi], \hat{x}[\Delta \theta], \hat{x}[\Delta \psi])
\]

\[
\hat{\alpha} = \hat{\alpha} \otimes \Delta \hat{\alpha}
\]

Zero the incremental orientation state elements.

\[
\hat{x}[\Delta \phi] = \hat{x}[\Delta \theta] = \hat{x}[\Delta \psi] = 0
\]

Algorithm Summary

- Given: Initial state estimate, \(\hat{x}(0) \)
 - External Orientation estimate, \(\hat{\alpha}(0) \)
 - Error Covariance estimate, \(P(0) \)

- For each measurement \(z_\sigma(t) \) from sensor \(\sigma \) (and corresponding source) at time \(t \):
 1. Compute elapsed time \(\delta t \)
 2. Predict state and error covariance

\[
\hat{x}^- = A(\delta t) \hat{x}(t - \delta t)
\]

\[
P^- = A(\delta t) P(t - \delta t) A^T(\delta t) + Q(\delta t)
\]
Algorithm Summary (Contd....)

3. Predict measurement and compute Jacobian
\[
\hat{z} = \tilde{h}_o(\hat{x}'(t), \dot{\hat{x}}'(t), \tilde{b}(t), \tilde{c}(t))
\]
\[
H = H_o(\hat{x}'(t), \dot{\hat{x}}'(t), \tilde{b}(t), \tilde{c}(t))
\]

4. Compute Kalman gain
\[
K = P^- H^T (HP^- H^T + R_o(t))^{-1}
\]

5. Compute measurement residual
\[
\Delta \tilde{z} = \tilde{z}_o(t) - \hat{z}
\]

Algorithm Summary (Contd....)

6. Correct the prediction
\[
\hat{x}(t) = \hat{x}' + K \Delta \tilde{z}
\]
\[
P(t) = (I - KH)P^-
\]

7. Update external orientation quaternion
\[
\Delta \hat{\alpha} = \text{quaternion}(\hat{x}[\phi], \hat{x}[\theta], \hat{x}[\psi])
\]
\[
\hat{\alpha} = \hat{\alpha} \otimes \Delta \hat{\alpha}
\]

8. Zero incremental orientation state elements
\[
\hat{x}[\Delta \phi] = \hat{x}[\Delta \theta] = \hat{x}[\Delta \psi]
\]
SCAAAT AutoCalibration
- In effect, a distinct device filter for each source or sensor to be calibrated.

- Calibrate parameters in $\tilde{b}(t)$ and $\tilde{c}(t)$

- Notation: $\hat{x} \rightarrow$ Augmented matrix/vector

Device Filters
- Device parameters: $\hat{x}_\pi[i], i = 0, \ldots, n_\pi - 1$

1. (a) Allocate n_π dimensional state vector \hat{x}_π for the device.
 (b) Initialize with a priori estimates (from design).

2. (a) Allocate $n_\pi \times n_\pi$ noise covariance matrix $Q_\pi(\hat{\sigma})$
 (b) Initialize with expected parameter variances.

3. (a) Allocate $n_\pi \times n_\pi$ error covariance matrix P_π
 (b) Initialize with level of confidence in 1. above
Revised Tracking Algorithm

- Form augmented state vector
 \[
 \hat{x}(t - \delta t) = [\hat{x}^T(t - \delta t) \ \hat{x}_b^T(t - \delta t) \ \hat{x}_c^T(t - \delta t)]
 \]

- Augmented error covariance matrix
 \[
 \begin{bmatrix}
 P(t - \delta t) & 0 & 0 \\
 0 & P_b(t - \delta t) & 0 \\
 0 & 0 & P_c(t - \delta t)
 \end{bmatrix}
 \]

- State Transition Matrix
 \[
 \begin{bmatrix}
 A(\delta t) & 0 & 0 \\
 0 & I & 0 \\
 0 & 0 & I
 \end{bmatrix}
 \]

- Process Noise Matrix
 \[
 \begin{bmatrix}
 Q(\delta t) & 0 & 0 \\
 0 & Q_b(\delta t) & 0 \\
 0 & 0 & Q_c(\delta t)
 \end{bmatrix}
 \]

AutoCalibration (Contd....)

- Follow the original algorithm.
- Extract and save device filter portions.
 \[
 \begin{align*}
 \hat{x}_b(t) &= \hat{x}(t)[i...j] \\
 P_b(t) &= \hat{P}(t)[i...j,i...,j] \\
 \hat{x}_c(t) &= \hat{x}(t)[k...l] \\
 P_c(t) &= \hat{P}(t)[k...l,k...,l]
 \end{align*}
 \]

where
\[
\begin{align*}
i &= n + 1 \\
j &= n + n_b \\
k &= k + n_b + 1 \\
l &= n + n_b + n_c
\end{align*}
\]
- Small angles
 \[
 \cos(\Delta \theta) \approx 1, \quad \sin(\Delta \theta) \approx \Delta \theta
 \]

- Symmetry of \(Q(\Delta t), R_\sigma, P \)

- Sparse Matrices - \(A(\Delta t) \) and Jacobian \(H \)

- Matrix inversion - reduced size of measurement vector

Code Optimization Strategies
Filter Stability

- If there be real numbers $\alpha_1, \beta_1 > 0$ and $\alpha_2, \beta_2 < \infty$ such that for all $k \geq N$, for some $N \geq n/m$

$$\alpha_1 I \leq \sum_{i=k-N}^{k-1} A(t_k - t_{i+1})Q(t_k - t_{i+1})A^T(t_k - t_{i+1}) \leq \alpha_2 I$$

$$\beta_1 I \leq \sum_{i=k-N}^k \Gamma(i,k) \leq \beta_2 I$$

where

$$\Gamma(i,k) = A^T(t_i - t_k)H^T(t_i)R^{-1}(t_i)H(t_i)A(t_i - t_k)$$

$$H(t_i) = H_{\sigma}(\tilde{x}(t_i),\tilde{b}(t_i),\tilde{c}(t_i))$$

then the global system given by our dynamic and measurement model is uniformly asymptotically stable.

Source and Sensor Ordering Schemes

- Use a measurement scheduling algorithm
 - Better resource utilization
 - Monitor and control uncertainty in state vector

- Round-robin implementation
EXPERIMENTS AND SIMULATIONS

Hi-Ball Tracker

- Inside-out tracking
Initialization – Tracker

- 15-element state vector: $\hat{x}(t) = [\hat{x}(t) \ \hat{x}_b(t)]$
- State Transition Matrix:
 - Main tracker filter: $A(\delta t)$
 - Beacon filter: 3x3 Identity matrix
- Noise covariances determined off-line.

- Beacon filter state \rightarrow initialized to (erroneous) position estimates.
- Beacon Error covariance matrix \rightarrow initialized to
 $$P_b(0)[i, j] = \begin{cases} (0.001)^2 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Measurement Noise

- $R_\sigma(t) \rightarrow$ Uncertainty in actual camera measurement
 $$R_\sigma(t)[i, j] = \begin{cases} \lambda_c & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$
- Distance and angle-dependent variance λ_c
 $$\sqrt{\lambda_c} = \frac{\sqrt{\lambda_0} d_b^2}{a \alpha_b^3 + b \alpha_b^2 + c \alpha_b + 1}$$
- Use previous position estimate to compute d_b and α_b
Simulation - Accuracy

- Collinearity - typically uses $N = 10$ observations per estimate.

- SCAAT
 - Higher update rate
 - Kalman Filtering
 - Autocalibration

Autocalibration

- Stationary HiBall on stable platform.
- Estimate position with overhead beacons
- Deviation of estimates with time progressively decreases once autocalibration turned on.
** Blocked Cameras

- Occlusion
- Camera not facing ceiling

** The Weak Links

- **Cold Start**

 Initialization to completely erroneous state vector sometimes leads to divergence.
Thank You!!