Induction Variables & Strength Reduction

Induction variable: variable whose successive values form an arithmetic progression in loop

Ex. do i = 1,99
 a(i) := 2*i - 1
enddo

i is inductive
2*i-1 is inductive

t := -1
do i = 1,99
 t := t + 2
 a(i) := t
enddo

Replaces expensive ops (like *) with less expensive ops (like +)

Strength Reduction

Loop Peeling

Remove 1 or more iterations from beginning/end of loop

Ex. do i = 1,100
 a(i) := a(i) + a(1)
enddo

i = 1
i > 1

a(1) := a(1) + a(1)
doi = 2,100
a(i) := a(i) + a(1)
enddo

Beneficial?

Always possible?
Index Set Splitting

Split index set 1,...,N into multiple sets

Ex. do i = 1,100
 a(i) := b(i) + c(i)
 if (i>50) then
 d(i) := a(i) + a(i-10)
 enddo

Beneficial?

Always possible?
Global Value Numbering with SSA

X, Y are \textit{dynamically equivalent} at P if they have the same values whenever control reaches P on execution.

Undecidable \xrightarrow{} Develop static notion \textit{Congruence}

X congruent to Y \xrightarrow{} X dynamically equivalent to Y

Go beyond Basic Block

Ex.

Value Graph for Basic Block

A := 3
B := 3
C := A+1
D := B+1
if (C>3)...

\texttt{C and D are congruent:}

\textit{have identical operators, and like operands are congruent}

Like value-numbering
Why SSA?

J := 5
K := 5

J := 6
K := 7

J1 := 5
K1 := 5

J2 := 6
K2 := 7

congruent

not congruent

J1, K1 congruent
J2, K2 not congruent

What about control flow?

I1 := 5

I1, J1, K1 congruent at B if assignments dominate B
Value Graph for SSA

Nodes Constants, operators, phi-functions

Directed Edges From use to node where value generated

Labels Constant, operator, function symbols

Ex.

\[(I_1 > 29)\]
\[J_1 := 1\]
\[K_1:= 1\]
\[J_3 := \phi (J_1, J_2)\]
\[K_3 := \phi (K_1, K_2)\]

\[\text{BB} \# \text{for phi function}\]

Value Graph for SSA (example)
Congruence

A is **congruent** to node B if

1. A is the same node as B, or
2. A and B are constant nodes, with the same constant value, or
3. A and B are operator nodes, with the same operator, and their like operands are congruent

Vars X and Y are **equivalent** at P if their nodes are congruent and defining assignments dominate P.

Ex.

\[J_1, K_1, L_1 \text{ congruent} \]
\[J_2, K_2, L_2 \text{ congruent} \]
\[J_3, K_3 \text{ congruent, but not with } L_3 \]

Get equivalence classes of variables

Loop Example

Entry
\[\text{read}(N_1) \]
\[J_1 := 1 \]
\[I_1 := 1 \]

\[J_3 := \phi(J_1,J_2) \] (2)
\[I_3 := \phi(I_1,I_2) \]
\[(I_3 \mod 2 = 0) \]

\[J_4 := J_3 + 1 \]
\[I_4 := I_3 + 1 \] (3)
\[J_5 := J_3 + 2 \]
\[I_5 := I_3 + 2 \]

\[J_2 := \phi(J_4,J_5) \]
\[I_2 := \phi(I_4, I_5) \]
\[(J_2 > N_1) \] Exit

Value graph for J2 is identical

BUT cycles prohibit finding it!
Algorithm Overview

1. Compute SSA.
2. Build value graph for SSA.
3. Optimistically assume all nodes with same label are congruent. Determine congruence of nodes by partitioning algorithm.
4. Check for equivalence.

Partitioning: \((O(E \log E)) \)

1. Put all nodes with same label in same partition.
2. **i+1:** Two nodes are in same partition at step \(i+1 \), if at step \(i \), they are in the same partition and the destination of their edges are in the same partition.

Taking Control Flow into account

![Diagram](image-url)
Loop Example

Detecting Congruence:
1. Same initial values
2. Same modifications in loop
3. Same no. of iterations

Entry
→
read(N1)
J1 := 1
I1 := 1

J3 := φ(J1, J2) (J1, J2)
I3 := φ(I1, I2)
(I3 mod 2 = 0)

J4 := J3 + 1
I4 := I3 + 1

J5 := J3 + 2
I5 := I3 + 2

J2 := φ(J4, J5)
I2 := φ(I4, I5)
(J2 > N1)

J6 := φ(φ(φ(J2 > N1, J2)))

Other Extensions

Incorporate arrays, pointers

Update, Access functions

Take commutativity into account

*Ex. a*b same as b*a*

Combine with hash-based approach

(Cooper et. al.)