Control Dependences

if p then S1
elseif q then S2
else S3
endif
endif
S4

Sequential Program ↔ Fixed Order

Goal: Remove Unnecessary Order

Useful for parallelism

Control Dependence Intuition

Def: Y is control dependent on X with label L iff

Must execute Y

path that excludes Y
Control Dependence example

if p then S1
else if q then S2
 else S3
endif
endif
S4

q, S4 have same control dependence on p with label T

Other control dependences?

Potential Parallelism in Procedures

do 10 i = 1,N
 S1
 if p then
 S2
 S3
 S4
 endif
 S5
enddo

Between Statements Call, Do,...

Inside Iterations

Nested
Postdominator Relation

Def: X **postdominates** Y iff X is on every path in CFG from Y to end

Strictly postdom. X **postdominates** Y iff $X = Y$ and X postdom. Y

Immediate postdominators form a tree

Control Dependence Definition

Def: Y is **control dependent** on X with label L iff

Y does not strictly postdominate X

Control Dependence & Dominators

Def: Y is \textit{control dependent} on X with label L \textit{iff} X in DF(Y) in Reverse CFG

Reverse CFG

Y dominates \quad Y \textit{does not dominate}

Control Dep. & Dominance Frontiers

Y is in CD(X) in CFG G \quad X in DF(Y) in Reverse CFG

\begin{itemize}
 \item \textit{Good Algorithm for CD}
 \item \textit{Good Algorithm for DF}
 \item SSA acceptance
\end{itemize}

\begin{itemize}
 \item efficient
 \item well-defined
\end{itemize}
Control Dependence Example

<table>
<thead>
<tr>
<th>Reverse CFG</th>
<th>CFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 in DF(P2)</td>
<td>Z in CD(P1)</td>
</tr>
<tr>
<td>P1 in DF(Z)</td>
<td>Z in CD(P2)</td>
</tr>
<tr>
<td>P1 in DF(W)</td>
<td>W in CD(P1)</td>
</tr>
<tr>
<td>P1 in DF(P1)</td>
<td>P1 in CD(P1)</td>
</tr>
<tr>
<td>P1 in DF(J)</td>
<td>J in CD(P1)</td>
</tr>
</tbody>
</table>

Control Dependence Example

<table>
<thead>
<tr>
<th>Reverse CFG</th>
<th>CFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2 in DF(Z)</td>
<td>Z in CD(P2)</td>
</tr>
<tr>
<td>P1 in DF(P2)</td>
<td>P2 in CD(P1)</td>
</tr>
<tr>
<td>P1 in DF(W)</td>
<td>W in CD(P1)</td>
</tr>
<tr>
<td>P1 in DF(P1)</td>
<td>P1 in CD(P1)</td>
</tr>
<tr>
<td>P1 in DF(J)</td>
<td>J in CD(P1)</td>
</tr>
</tbody>
</table>
Data Dependence

Def: S2 is *data dependent* on S1 w.r.t. variable X iff there is a path of nonzero length in the CFG from S1 to S2, with no intervening def. of X, and either

S1: \(X := X \) & \(X := \) & \(X := \)

S2: \(:= X \) & \(X := \) & \(X := \)

flow & *anti* & *output* (storage-related)

Program Dependence Graph Example

```
-do while (0 < i < n)
  x = FOO (y)
  if p then
    z := x + y
    A(2*i) := z + A(2*i)+1
  else
    B(i) := x + 5.0
  call P(i)
-enddo
```

Not all dependences shown (e.g. var. i)

Which are flow, anti, output?
Data Dependence
Gives constraints on parallelism that must be satisfied
Must be honored to have correct program
Any order that does not violate these dependences is correct!

Program Dependence Graph =
Control Dependence Graph +
Data Dependences

Program Dependence Graph (PDG)
Facilitates performing most traditional optimizations
Constant folding, scalar propagation, common subexpression elimination, code motion, reduction in strength
Requires only single walk over PDG
Exposes more possibilities for re-order
Incremental changes
Update data dependence when c.d. changes
Data Dependence Analysis

For linear subscript expressions

Dependence Equations

Ex. \(\text{do } i = 1,10 \)
\(\ldots A(3i+1) \ldots \)
\(\ldots A(5i+2) \ldots \)
\(\text{endo} \)

\[3X + 1 = 5Y + 2 \]
\[1 \leq X,Y \leq 10 \]

Decision Algorithms

- **Any integer solution**: linear
- **Bounded rational solution**: linear
- **Bounded integer solution**: exponential

Data Dependence Analysis

Ex. 1. \(\text{do } i = 1,10 \)
\(A(2i) \)
\(A(2i+1) \)
\(\text{endo} \)

Independent

Ex. 2. \(\text{do } i = 1,10 \)
\(A(i) \)
\(A(i-1) \)

Dependent with distance 1 (to next iteration)

Ex. 3. \(\text{do } i = 1,10 \)
\(A(i) \)
\(A(2i) \)

Dependent with direction < (to future iteration)
Data Dependence Analysis

Ex 4. do j = 1,100
 do i = 1,100
 A(i, j)
 A(i-1, j)
 enddo
enddo

Dependence vector
(0, 1)
(1, j)

loop-carried dependence on i loop

GCD Test

Th. If \(\text{gcd}(a_1, a_2, ..., a_n) \mid c \), then
there is no integer solution to the equation
\[a_1 \cdot i_1 + a_2 \cdot i_2 + \cdots + a_n \cdot i_n = c \]

Ex. \(A(2 \cdot i)) A(2 \cdot i + 1) \)
\[2 \cdot i_1 = 2 \cdot i_2 + 1 \]
\[2 \cdot i_1 - 2 \cdot i_2 = 1 \]
\(\text{gcd}(2, -2) = 2, \text{ and } 2 \mid 1 \)

so the theorem guarantees no integer solutions

Independence

Ex. \(A(i) \) \(A(i-1) \)