Data Flow Analysis

Static (compile-time) analysis of how data flows during execution

Undecidable in general for real execution

Prove small facts about program

Solve system of data flow equations over flow graph

Determine legality of specific optimizations

Need conservative answers

Want most optimistic solution

Data Flow Information

Ex.

(S1) \(Y := 1 \)

(S2) \(X := K \)

(S3) \(T := \text{FOO}(Z) \cdot Y + \text{FOO}(Z) \)

(S4) \(Y := Y + K \)

Determine if \(X \) a constant in loop

Determine if \(\text{FOO} \) modifies \(Z \)

Determine if expression \(\text{FOO}(Z) \cdot Y + \text{FOO}(Z) \)

already computed

Determine if \(Y \) not used later in program
Data Flow Equations

Local information:
- $\text{Gen}(B)$: Info generated in block B
- $\text{Pres}(B)$: Info preserved through block B

Data Flow Equations:
$$\text{OUT}(B) = \text{Gen}(B) \cup (\text{In}(B) \cap \text{Pres}(B))$$

Intuitively, info at end of basic block B is either
- Generated within block B, or
- Enters at beginning, and is not killed as control flows thru B

Typically assumes all control flow paths may be taken

Variations:
- Info flow forward or backward in CFG
- How Gen, Pres are defined
- How In, Out are initialized

Optimizer Structure

```
control flow analysis + CFG + DFA + SSA-based Transformations
```

Typical

```
Ast to CFG Analysis
```

```
optimized IL
```

Reaching Definitions Problem

Def: A *definition* of a variable is a possible assignment to the variable. We say that the statement containing the definition *defines* the variable.

Def: If a definition *always* assigns to the variable, it *kills* all other definitions. Otherwise, it *preserves* them.

Ex. \(X := A \) is a definition, and kills all other defs, of \(X \)

Def: A definition \(D \) of \(X \) at node \(B_1 \) *reaches* node \(B_2 \) if there is a path \(p \) from \(B_1 \) to \(B_2 \) such that \(D \) is preserved on path \(p \).

\[
\text{Reachin}(B) = \text{set of defs that reach the entry of node } B
\]

Reaching Definitions Example

Diagram:

```
      B1
   /     \
B2-X:=2- B4-X:=3
      |  \
      |   \
      |    B5
```

Def of \(X \) at node \(B_2 \) reaches \(B_4 \) (not \(B_1, B_3, B_5 \))
Def of \(X \) at node \(B_4 \) reaches \(B_5 \) and kills defs at \(B_2, B_3 \)

Useful for constant propagation, code motion
Solving Reaching Definitions Problem

Local Analysis:
- \(\text{Gen}(B) \): set of local defs that reach the end of \(B \)
- \(\text{Pres}(B) \): set of defs preserved through \(B \)

Data Flow Equations:
- \(\text{Reachin}(B) \): set of defs that reach entry of \(B \)
- \(\text{Reachout}(B) \): set of defs that reach exit of \(B \)

Initialize to \(\emptyset \) (empty set)

\[
\begin{align*}
\text{Reachin}(B) &= \bigcup_{P \in \text{pred of } B} \text{Reachout}(P) \\
\text{Reachout}(B) &= \text{Gen}(B) \cup (\text{Reachin}(B) \setminus \text{Pres}(B))
\end{align*}
\]

Solution Method: Iterate until no change in Reach sets. (fixed point)

Most optimistic: \(\emptyset \)
Most pessimistic: all defs (satisfies the equations!)

Reaching Defs Example

\begin{tabular}{|c|c|c|c|c|}
\hline
Line & (1) L1:Read(N) & (2) Call FOO(N) & (3) I := 1 & (4) Repeat Until(I > N) \\
\hline
Gen & N1 & N2 & I3 & I6 \\
Kill & N2 & N1 & I4 & I6 \\
Reachin & A5 & A5 & A5 & A5 \\
Reachout & I6 & I6 & I6 & I6 \\
\hline
\end{tabular}

With sets or bit vectors

Takes time to propagate info, entire pass with no change

Termination? Complexity?
Iterative Algorithm for RD Problem

Local Sets: Compute Gen(B), Pres(B)
Initialization: Initialize In(B), Out(B) to empty
Worklist Algorithm:
Worklist := Set of all nodes
While(Worklist ≠ 0)
 Remove node N from worklist
 OldOut := Out(N)
 In(N) := \bigcup_{P \text{ pred of } N} Out(P)
 Out(N) := Gen(N) \bigcup \{ In(N) \setminus Pres(N) \}
 if (Out(N) ≠ OldOut) then add N to Worklist

Live Definitions Problem

Def: A def D of X is live at node N if there is a path p from N to Exit with a use of X that can use the value defined at D. Otherwise, the def is dead.
Def: The variable X is live at node B if there is def D of X that is live at B.

Live Variables Problem: What variables are live at B?
Useful for storage reuse, register allocation
Live(B) = set of variables live on exit from node B
Ex:
Solving Live Variables Problem

Local Analysis:

- \(\text{Gen}(B) \): set of variables used in B (before def.)
- \(\text{Pres}(B) \): set of variables NOT always redefined in B

Data Flow Equations:

Initialize to \(\phi \)

\[
\text{Liveout}(B) = \bigcup_{S \text{ succ of } B} \text{Livein}(S)
\]

\[
\text{Livein}(B) = \text{Gen}(B) \cup (\text{Liveout}(B) \cap \text{Pres}(B))
\]

Solution Method: Iterate until no change in Live sets.

Most optimistic: \(\phi \)
Most pessimistic: all defs

How different from Reaching Defs problem?

<table>
<thead>
<tr>
<th>Live Vars Example</th>
<th>Gen</th>
<th>Kill</th>
<th>Livein</th>
<th>Liveout</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Read(N)</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. B := 2</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. I := 1</td>
<td>I</td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>4. Repeat Until(I > N)</td>
<td>I, N</td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>5. A(I) := A(I) + 1</td>
<td>A, I</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. I := I + 1</td>
<td>I</td>
<td></td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>7. Endrepeat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Print(A(N))</td>
<td>A, N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Print B * N</td>
<td>B, N</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Direction of Flow

Forward: Information at node depends on what happens later in flow graph

\[
\text{In}(B) = \bigcup_{P \text{ pred of } B} \text{Out}(P) \\
\text{Out}(B) = \text{Gen}(B) \bigcup (\text{In}(B) \cap \text{Pres}(B))
\]

Backward: Information at node depends on what happens earlier in flow graph

\[
\text{In}(B) = \text{Gen}(B) \bigcup (\text{Out}(B) \cap \text{Pres}(B)) \\
\text{Out}(B) = \bigcup_{S \text{ succ of } B} \text{In}(S)
\]

Symmetry of Liveness/Reaching Defs

Swap In and Out, Backward and Forward

Reaching Defs:

\[
\text{In}(B) = \bigcup_{P \text{ pred of } B} \text{Out}(P) \\
\text{Out}(B) = \text{Gen}(B) \bigcup (\text{In}(B) \cap \text{Pres}(B))
\]

Liveness:

\[
\text{In}(B) = \text{Gen}(B) \bigcup (\text{Out}(B) \cap \text{Pres}(B)) \\
\text{Out}(B) = \bigcup_{S \text{ succ of } B} \text{In}(S)
\]
Other Data Flow Problems

Available Expressions:
An expression \(e \) is \textit{available} at \(B \) if every path to \(B \) contains a computation of \(e \) from \(\text{def} \)s that are live at \(B \).

\textit{Forward}, 1 bit per expression

Upwards Exposed Uses:
Set of uses that may not be defined.

\textit{Backward}, 1 bit per expression

Partially Redundant Expressions:
Set of expressions appearing at least twice on some path, without its \(\text{operands} \) being modified between occurrences of the expression.

\textit{Bidirectional}, 1 bit per expression

Available Expressions

\textbf{Local Analysis:}

\(\text{Gen}(B) \): set of expressions generated in \(B \)

\(\text{Kill}(B) \): set of expressions killed in \(B \)

\textbf{Data Flow Equations:}

\(\text{In}(B) \): set of expressions that reach entry of \(B \)

\(\text{Out}(B) \): set of expressions that reach exit of \(B \)

Initialize to

\(\text{In}(B) = \)

\(\text{Out}(B) = \)
Must vs May Information

Must: Implies a guarantee
May: Identifies possibility

Liveness is may: there is a path on which variable is live
Reaching Def? Available Exp?

<table>
<thead>
<tr>
<th>Must:</th>
<th>May:</th>
</tr>
</thead>
<tbody>
<tr>
<td>desired info safe</td>
<td>small set larger</td>
</tr>
<tr>
<td>Gen Kill</td>
<td>all may guaranteed</td>
</tr>
<tr>
<td>merge initialization</td>
<td>empty set all</td>
</tr>
<tr>
<td>large set smaller only must might be</td>
<td></td>
</tr>
</tbody>
</table>