CSE 120: Principles of Operating Systems

Lecture 3

CPU Scheduling

October 2, 2003

Prof. Joe Pasquale

Department of Computer Science and Engineering

University of California, San Diego

© 2003 by Joseph Pasquale
Read Chapter 6 (CPU Scheduling)

Programming Assignment 1

- Will be available by midnight Sunday
- Due in two weeks: Sunday October 19 (midnight)

Midterm

- Tentative date: week of October 20
The CPU Scheduling Problem

We have multiple processes/threads, but only one CPU

How much time does each process/thread get on CPU?

Possibilities

• Keep it till done
• Each uses it a bit and passes it on
• Each gets proportional to what they pay

Which is the best policy?
There is No Single Best Policy

Depends on the goals of the system

Different for

• your personal computer
• large time-shared computer
• computer controlling a nuclear power plant

Might even have multiple (conflicting) goals
Classifying Schedulers

Preemptive vs. non-preemptive

Real-time: non vs. soft vs. hard

Interactive vs. non-interactive (batch)

Mixture
Scheduling: An Example

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time</th>
<th>Service Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

What order minimizes average turnaround time?

Turnaround time: time between arrival and departure

- arrive, wait for CPU (waiting time)
- use CPU (service time), depart
Longest First vs. Shortest First

Longest First

P1

P2

P3

0 1 2 3 4 5 6 7 8 9

Shortest First

P1

P2

P3

0 1 2 3 4 5 6 7 8 9
Shortest First Is Provably Optimal

- Given n processes with service times $S_1, S_2, S_3, \ldots, S_n$

- Average Turnaround Time (ATT)

 \[
 \text{ATT} = \frac{S_1 + (S_1 + S_2) + (S_1 + S_2 + S_3) + \ldots + (S_1 + \ldots + S_n)}{n}
 \]

 \[
 = \frac{(n \times S_1) + ((n-1) \times S_2) + ((n-2) \times S_3) + \ldots + S_n}{n}
 \]

- S_1 has maximum weight (n), minimize it

- S_2 has next-highest weight ($n-1$), minimize it after S_1

- In general: order by shortest to longest
Consider Different Arrival Times

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time</th>
<th>Service Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Diagram:
- P1: Waiting: 0-3, Executing: 3-5
- P2: Waiting: 1-3, Executing: 3-7
- P3: Waiting: 1-3, Executing: 3-8
First-Come First-Served

Allocate CPU in the order that processes arrive

<table>
<thead>
<tr>
<th>Process</th>
<th>Departure Time</th>
<th>Turnaround Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>

- Average Turnaround Time = $\frac{(5 + 7 + 6)}{3} = 6.0$
- Simple, non-preemptive, poor for short processes
Round Robin

Time-slice CPU: give each processes a quantum in turn

<table>
<thead>
<tr>
<th>Process</th>
<th>Departure Time</th>
<th>Turnaround Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

- Average Turnaround Time = \((9 + 6 + 1)/3 = 5.3\)
- Simple, preemptive, more overhead than FCFS
Shortest Process Next

Select process with shortest execution time

<table>
<thead>
<tr>
<th>Process</th>
<th>Departure Time</th>
<th>Turnaround Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

- Average Turnaround Time = \(\frac{5 + 8 + 3}{3} = 5.3 \)
- Optimal for non-preemptive, must know exec times
Shortest Remaining Time

Select process with shortest remaining time

<table>
<thead>
<tr>
<th>Process</th>
<th>Departure Time</th>
<th>Turnaround Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

• Average Turnaround Time = \((9 + 4 + 1)/3 = 4.7\)

• Optimal, must know execution times
Multi-Level Feedback Queues

Multiple ready queues 0, 1, ..., n

Always select process in lowest-numbered queue

Run selected process for 2^i quantums (for queue i)

If process doesn’t block, place in next higher queue (except last)
Example using Feedback Queues

Select process in lowest-numbered queue

• preemptive: if a new process arrives, current process goes back to queue it came from

- Average Turnaround Time = (9 + 5 + 1)/3 = 5.0
- Favors shorter processes over longer, dynamic
Priority Scheduling

Select process with highest priority

Example: P1 = medium, P2 = high, P3 = low

- Allows scheduling based on arbitrary criteria
 - External, e.g., based on who’s willing to pay most
 - Internal, e.g., past CPU usage (dynamic)
Fair Share (Proportional Share)

Processes get predetermined fraction of CPU time

- Example: P1 gets 25%, P2 gets 50%, P3 gets 25%

Compute ratios of fraction of time used

- at time 2, P2/P1 = 100/50 = 2/1: fair share
Computing Fraction of Time

Compute fraction F_n of CPU time used up to time n

$$F_n = L + (1 - a) F_{n-1}$$

- L: did process run during last interval? 1=yes, 0=no
- a: number between 0 and 1
 - indicates importance of recent CPU usage relative to past
 - large a: give more weight to recent usage, forget quickly
 - small a: give more weight to past usage, forget slowly
Examples: $F_n = a L + (1 - a) F_{n-1}$

- $a = 1$ means ignore the past
 - $F_n = L$

- $a = 0.5$, recent usage and past equally important
 - $F_n = 0.5 L + 0.5 F_{n-1}$
 - this is an exponential average (typically $a < 0.2$)

- $a = 1/n$, simple average over all intervals
 - $F_n = (1/n) L + (1 - 1/n) F_{n-1}$
 - $F_n = (L + F_1 + F_2 + F_3 + ... + F_{n-1})/n$
Fair Share using Simple Average

\[\bar{F} = \frac{1}{n} : \quad F_n = \frac{L + F_1 + F_2 + F_3 + \ldots + F_{n-1}}{n} \]

Example: P1 gets 25%, P2 gets 50%, P3 gets 25%

Note: n is time intervals since process started
Fair Share using Exponential Average

\[\theta = 0.5 : \quad F_n = 0.5 L + 0.5 F_{n-1} \]

Example: P1 gets 25%, P2 gets 50%, P3 gets 25%