CSE 202 Homework 1
Divide and conquer; comparison algorithms
Fall 2002
Due Thursday, October 17

For each of the algorithm problems, design as asymptotically efficient an algorithm as possible. Give a correctness argument (explanation, if it is relatively simple, or proof if not) and time analysis. You may use any well-known algorithm or data structure, or algorithm from the text or from class, as a sub-routine without needing to provide details.

Base Conversion. Give an algorithm that inputs an array of \(n \) base \(b_1 \) digits representing a positive integer in base \(b_1 \) and outputs an array of base \(b_2 \) digits representing the same integer in base \(b_2 \). Get as close as possible to linear time. Assume \(b_1, b_2 \) are fixed constants.

Binary Tree Isomorphism Two rooted trees \(T_1 \) and \(T_2 \) are isomorphic if there is a 1-1 onto map \(f : T_1 \to T_2 \) so that \(f(\text{root}_1) = \text{root}_2 \) and \(p_2(f(x)) = f(p_1(x)) \), for every \(x \in T_1 \) except root\(_1\). (Here, root\(_1\) is the root of \(T_1 \), root\(_2\) is the root of \(T_2 \), and \(p_1, p_2 \), represent the parents in the respective trees.) Give an efficient algorithm to determine whether two \(n \) node rooted binary trees are isomorphic. (On the calibration homework, an \(O(n^2) \) algorithm was given, so you should try to do better than \(O(n^2) \). Note that \(f \) is NOT GIVEN AS INPUT—your job is to decide whether such an isomorphism exists (so your output will be a Boolean), Binary tree means that each node has at most two children, say left\(_1\) and right\(_1\) where one or more could be null. Do not assume the trees are balanced.)

Weighted Median, Problem 9-2, part c., p. 194

\(k \)-Almost Sorted Arrays Call an array \(A \) \(k \)-almost sorted if the \(l \)th largest element is in positions \(l-k, ... l+k \) in the input array. Give an \(O(n \log k) \) algorithm to sort a \(k \)-almost sorted array. (5 points) Prove that, for any \(4 \leq k \leq n \), ANY algorithm to sort a \(k \)-almost sorted array requires time \(\Omega(n \log k) \). (The lower bound must hold for any algorithm, and it must hold for \(k \) any function of \(n \), such as \(k = \log n \).) (5 points)

Implementation: Integer Multiplication Implement the \(O(n \log^3) \) divide-and-conquer algorithm for integer multiplication, but with a threshold, below which naive “gradeschool” multiplication is used. Experimentally determine the optimal threshold. For what values of \(n \) do you see an improvement in the time using divide-and-conquer, both using no threshold and using the optimal threshold?