Midterm page 1

The worst-case complexity of an algorithm is ... a function from N (or size of instance) to N.
Ω(n lg n) is ... a set of functions.
A random variable is ... a function from elementary event to real number.
Polyhash is ... a set of (hash) functions.

\[T(n) = 3 \cdot T(n/2) + n \quad T(n) = \Theta(n^{\log_3 3}) \]
\[T(n) = 3 \cdot T(n/3) + 5 \quad T(n) = \Theta(n) \]
\[T(n) = 3 \cdot T(n/4) + n \log n \quad T(n) = \Theta(n \log n) \]

False A heap of height n can have \(2^{n+1} - 1\) nodes
False A tree of height k might only have k+1 nodes
True A red-black can implement a priority queue efficiently

Midterm page 2

Yes, you can implement “Decrease-Key(S,x,k)” in a max heap efficiently. Go to node x (which you can do since you have a pointer to it), change its priority to k, apply Heapify (which “bubbles downward”).

Given a red-black tree ... in black subtree
- Every non-leaf has 2, 3, or 4 children (by P3).
- Every leaf has depth k (by P4).
- Thus \# black nodes \(\geq 2^{k+1} - 1\) (obvious, or by induction)

In full red-black tree, \(N \geq \# \text{ black nodes} \geq 2^{k+1} - 1\)
- So \(\log N \geq \log (2^{k+1} - 1) \geq \log 2^k = k\); that is, \(k < \log N\).
- Longest path \(\leq 2 k\) (by P4).
- So height tree = longest path \(\leq 2 \log N\).

NOTE: Just saying “Tree is balanced” is insufficient – we never even really defined what “balanced” means.
If keys are more or less uniformly randomly distributed (so Bucket Sort take \(O(N)\) time) and \(K\) is large (or grows with \(N\), so \(KN\) isn't \(O(N)\)), then Bucket Sort will be faster than Radix Sort.

If the keys are very skewed, and \(K\) is small, Radix Sort will be faster (actually, all you really need is that \(K\) is very small, that is, \(K \ll \log N\)).

Greedy change-making can be arbitrarily bad. Given any \(c\), let \(D_2 = 2c\), \(D_3 = 2c+1\), and \(N = 4c\). Then greedy will give one \(D_3\) and \(2c-1\) \(D_1\)'s, or \(2c\) coins. But optimal is to give two \(D_2\)'s, or 2 coins. So greedy is \(c\) times worse.

Let \(A(i)\) = best sum of numbers in the first \(i\) columns that doesn't use any entry in column \(i\).

\(B(i)\) = best sum [of ...] that uses only the top entry in column \(i\)

\(C(i)\) = best sum that uses middle entry in column \(i\)

\(D(i)\) = best sum that uses only the bottom entry in column \(i\)

\(E(i)\) = best sum that uses top and bottom entry of column \(i\).

I claim, given \(A(i), \ldots, E(i)\), we can compute \(A(i+1), \ldots, E(i+1)\) in the “obvious” way. This will take \(\Theta(N)\) time.

E.g. \(A(i+1) = \max(A(i), B(i), C(i), D(i), E(i))\)

\(B(i+1) = T(1,i+1) + \max(A(i), C(i), D(i))\),

etc.
Basic idea: use divide and conquer.

```c
ktile(A,N,K) {
    /* print the K-tiles of A[1], ..., A[N] */
    Let M = select(A, N, K/2); /* takes O(N) time */
    Split A by M into Big and Small (each of size N/2);
    if (K>1) call ktile (Big, N/2, K/2);
    print M;
    if (K>1) call ktile (Small, N/2, K/2);
}
```

Complexity: $T(N,K) = 2T(N/2, K/2) + cN$

Recursion tree has $\lg K$ levels, each requires cN time.

So complexity is $c N \lg K$.

CSE 202 - Shortest Paths