CSE 202 - Algorithms

Polynomial Representations, Fourier Transfer, and other goodies.
(Chapters 28-30)

Representation matters
Example: simple graph algorithms

Adjacency matrix

\[M[i,j] = 1 \text{ iff } (i,j) \text{ is an edge.} \]

Requires \(\Omega(V^2) \) just to find some edges (if you’re unlucky and graph is sparse)

Adjacency lists

\[M[i] \text{ is list of nodes attached to node } i \text{ by edge} \]

\(O(E) \) algorithm for connected components,
\(O(E \lg E) \) for MST
...

Representation matters

Example: long integer operations

Roman numerals

multiplication isn't hard, but if “size” of instance is number characters, can be \(O(N^2) \) (why??)

Arabic notation

\(O(N \lg^3) \), or even better.

Another long integer representation

Let \(q_1, q_2, \ldots, q_k \) be relatively prime integers.

Assume each is short, (e.g. \(< 2^{31} \))

For \(0 < i < q_1 q_2 \ldots q_k \), represent \(i \) as vector:

\(< i \mod q_1), i \mod q_2), \ldots, i \mod q_k >\)

Converting to this representation takes perhaps \(O(k^2) \)

\(k \) divides of \(k \)-long number by a short one.

Converting back requires \(k \) Chinese Remainder operations.

Why bother?

+ or \(\times \) on two such number takes \(O(k) \) time.

but comparisons are very time-consuming.

If you have many \(\times \)'s per convert, you can save time!
Representing \((N-1)^{th}\) degree polynomials

To convert:
Evaluate at \(N\) points
\(O(N^2)\)

Use \(N\) coefficients

\[a_0 + a_1 x + a_2 x^2 + \ldots + a_{N-1} x^{N-1}\]

Addition: point wise
Multiplication: convolution

Use \(N\) points

\[b_0=f(0), \ldots, b_{N-1}=f(N-1)\].

Addition: point wise
Multiplication: point wise

\[c_i = \sum a_k b_{i-k}\]

Add \(N\) basis functions
\(O(N^2)\)

So what?

Slow convolutions can be changed to faster point wise ops.

E.g., in signal processing, you often want to form dot product of a set of weights \(w_0, w_1, \ldots, w_{N-1}\) with all \(N\) cyclic shifts of data \(a_0, a_1, \ldots, a_{N-1}\). This is a convolution.

Takes \(N^2\) time done naively.

- Pretend data and weights are coefficients of polynomials.
- Convert each set to point value representations
 Might take \(O(N^2)\) time.
- Now do one point wise multiplications
 \(O(N)\) time.
- And finally convert each back to original form
 Might take \(O(N^2)\) time.

Ooops ... we haven't saved any time.
Fast Fourier Transform (FFT)

It turns out, we can switch back and forth between two representations (often called “time domain” and “frequency domain”) in \(O(N \log N) \) time.

Basic idea: rather than evaluating polynomial at 0, ..., N-1, do so at the N “roots of unity”
These are the complex numbers that solve \(X^N = 1 \).

Now use fancy algebraic identities to reduce work.

Bottom line - to form convolution, it only takes
\(O(N \log N) \) to convert to frequency domain
\(O(N) \) to form convolution (point wise multiplication)
\(O(N \log N) \) to convert back.

\(O(N \log N) \) instead of \(O(N^2) \).

The FFT computation
“Butterfly network”

Each box computes ...

\[
\begin{align*}
 x & \rightarrow x + \omega^j y \\
 y & \rightarrow x - \omega^j y
\end{align*}
\]

where \(\omega^j \) is some root of unity. Takes 10 floating-point ops (these are complex numbers).

Factoid: In 1990, 40% of all Cray Supercomputer cycles were devoted to FFT's
Fast Matrix Multiplication
(chapter 28)

Naïve matrix multiplication is $O(N^3)$
for multiplying two $N \times N$ matrices.

Strassen’s Algorithm uses 7 multiplies of $N/2 \times N/2$
matrixes (rather than 8).

$T(N) = 7T(N/2) + c N^2$. Thus, $T(N)$ is $O(\ ?\) = O(N^{2.81...})$.

It’s faster than naïve method for $N > 45$-ish.

Gives slightly different answer, due to different rounding.

It can be argued that Strassen is more accurate.

Current champion: $O(N^{2.376})$ [Coppersmith & Winograd]

Linear Programming
(chapter 29)

Given n variables x_1, x_2, \ldots, x_n,

- maximize “objective function” $c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$,
- subject to the m linear constraints:

 $a_{11} x_1 + a_{12} x_2 + \ldots + a_{1n} x_n \leq b_1$

 \ldots

 $a_{m1} x_1 + a_{m2} x_2 + \ldots + a_{mn} x_n \leq b_m$

Simplex method: Exponential worst case, but very fast in practice.

Ellipsoid method is polynomial time. There exists some
good implementations (e.g. in IBM’s OSL library).

NOTE: Integer linear programming (where answer must be integers)
is NP-hard (i.e., probably not polynomial time).