Minimum Spanning Trees
- Kruskal’s Algorithm
- Prim’s Algorithm

Union-Find Algorithm

or

A Quick Tour of Chapters 21, and 23,
with hints of Chapters 17 and 20.

Minimum Spanning Tree Problem

Given a weighted connected graph \(G = (V,E) \), ...
 - For each edge \((u,v) \in E\), \(w(u,v)\) is its “weight”.

... find a spanning tree \((V,T)\) ...
 - \(T \) includes each node of \(V \).
 - So \(T \) has exactly \(|V| - 1 \) edges.

of minimum weight.
 - Weight \(w(T) \) of \(T \) is sum of weights of its edges.
 - Minimum means no spanning tree has lower weight.

“Size” of instance of MST includes both \(|V|\) and \(|E|\).

Note that \(|V| \leq |E| \leq |V|^2\).

Greedy approach works for MST

If we build up a spanning tree by repeatedly adding a lightest legal edge, it will be a MST.
- “Legal” means you don’t introduce any cycles.

Several ways “lightest” can be interpreted:

1. Lightest among all remaining edges.
 While building, you have a forest (a set of trees).
 This is Kruskal’s algorithm.

2. Lightest among all edges connected to what you have already.
 You keep adding to a single tree.
 This is Prim’s algorithm.

Why greedy approaches work

Thm: Given \(G = (V,E) \) and \(A \subseteq E \) such that there exists a MST \(T \) of \(G = (V,E) \) with \(A \subseteq T \).

“A is a subset of a MST”

Suppose also that \(V = V_1 \cup V_2 \) and \(V_1 \cap V_2 = \emptyset \),

“V is partitioned into \(V_1 \) and \(V_2 \)”

that no edge of \(A \) goes from \(V_1 \) to \(V_2 \),

“the partition respects \(A \)”

and that \(e \) is a lightest edge from \(V_1 \) to \(V_2 \).

Then \(A \cup \{e\} \) is a subset of some MST.

“Though not necessarily of \(T \).”

“...adding light edges to a minimum spanning forest is OK.”
Why greedy approach works

Proof: (That $A \cup \{e\}$ is a subset of some MST)

If $e \in T$, we're done. (Recall: T was MST containing A.)

Otherwise, add e to T. This creates a cycle including e.

(A tree on $|V|$ nodes can only have $|V|-1$ edges.)

The cycle must have another edge e' going from V_1 to V_2.

Note that weight(e) \leq weight(e'). (e was a lightest edge)

Let $S = T \cup \{e\} - \{e'\}$. All nodes are still connected.

(If you needed e' to go from u to v in T, now you can take the other way around the cycle.)

So S is a spanning tree that’s not heavier than T.

Thus, $A \cup \{e\}$ is a subset of the MST S.

Kruskal’s algorithm

So named because Boruvka invented it in 1926

Sort edges by weight ($e_1 \leq e_2 \leq \ldots \leq e_{|E|}$);

$T = \phi$;

For $i = 1$ to $|E|$

If ($T \cup \{e_i\}$ is acyclic) $T = T \cup \{e_i\}$;

Takes $\Theta(|E| \lg |E|)$ time for sort, plus time for $|E|$ tests and $|V|$ “$T \cup \{e\}$” operations.

- If tests and unions take $\lg |E|$ time apiece or less, total time will be $\Theta(|E| \lg |E|)$
- Aside: $\Theta(|E| \lg |E|) = \Theta(|E| \lg |V|)$ (why??)
Digression: **Union-Find Problem**

For Kruskal’s algorithm, we need fast way to test if adding e_i to T creates a cycle.

At ith iteration, T is a set of trees.

(Initially, each tree contains one node).

$e_i = (u,v)$ is OK unless u and v are in the same tree.

It would suffice if we could process requests:

- **Make-Set(u)** - creates set containing u (for initialization)
- **Find-Set(u)** - returns representative element of u’s set

 If Find-Set(u) = Find-Set(v), we can’t add (u, v).
- **Union(u,v)** - combine sets containing u and v.

 Choose new representative.

Algorithms for Union-Find

Approach 1: Define $A[u] =$ representative of u.

- **Find-Set(u):** return $A[u]$. Takes $O(1)$ time.
- **Union(u,v):** Let $x = A[u]$, $y = A[v]$; change all x’s to y’s in A

 Takes $\Omega(|V|)$ time: too slow!

Approach 2: Above plus, for each set, a list of members.

- **Find-Set(u):** return $A[u]$ Takes $O(1)$ time.
- **Union(u,v):** for each member z of u’s list, add it to v’s list and set $A[z] = y$. What is worst case?

Magic Bullet: move elements of smaller list to larger.

No element will be moved more than $\lg |V|$ times.

Example of amortized analysis: Even though Union may take $O(|V|)$ time, doing $|V|$ unions takes $O(|V| \lg |V|)$ (assuming we start from one-element sets).
Algorithms for Union-Find

 - Each set is a tree; each node points to parent.
 - Root has null pointer.
- Find-Set(u): follow pointers to tree’s root.
- Union(u,v): make u’s root point to v’s root (or vice versa)

Balancing: make smaller tree point to larger.
 - Worst case $O(\log |V|)$ per request

Path Compression: whenever you follow path to root, reassign all pointers to go directly to root.
 - Amortized cost $O(\log |V|)$ per request.

Balancing + Path Compression: Amortized inverse-Ackerman’s(\(|V|\)) per request (“almost constant”)

Prim’s algorithm

So named because Jarnik invented it in 1930.

Grow (single) tree from start node by adding lightest edge from tree node to non-tree node.

How do we find the lightest edge quickly?

“Obvious” method:
 - Keep a min-priority queue of all edges connected to tree (key is weight of edge).
 - When we add node to tree, add all its edges to the queue.
 - When we Extract an edge from the queue, check that only one endpoint is in tree; if so, add other node to tree.

Requires $|E|$ Insert’s and $|E|$ Extract-Min’s

Complexity is $\Theta(|E| \log |E|)$ (which is also $\Theta(|E| \log |V|)$)
Prim's algorithm

Better method to find the lightest edge quickly:
- Keep priority queue of *nodes*, with key being the weight of the lightest edge from the node to the tree.
 - Initialize the queue to all nodes with key ∞
- When we add node to tree, for each of its edges, do a Decrease-Key operation to other endpoint.
- Extract-Min tells node to add to tree.

$|V|$ Insert's, $|V|$ Extract-Min's, and $|E|$ Decrease-Key's.

Complexity is still $\Theta(|E| \lg |V|)$

So what?? Fibonacci Heaps take amortized $O(1)$ time for Decrease-Key and $O(\lg |V|)$ time for other operations.

So time is $O(E + |V| \lg |V|)$ (An improvement for dense graphs).