Where are we?

- Traditional (RAM-model) analysis: Heapsort is better
 - Heapsort worst-case complexity is $\Theta(n \lg n)$
 - Quicksort worst-case complexity is $\Theta(n^2)$.
 - average-case complexity should be ignored.
 - probabilistic analysis of randomized version is $\Theta(n \lg n)$
- Yet Quicksort is popular.
- Goal: a better model of computation.
 - It should reflect the real-world costs better.
 - Yet should be simple enough to perform asymptotic analysis.
2-level memory hierarchy model (MH$_2$)

Data moves in “blocks” from Main Memory to cache.

- A block is b contiguous items.
- It takes time b to move a block into cache.
- Cache can hold only b blocks.
 Least recently used block is evicted.

Individual items are moved from Cache to CPU.
Takes 1 unit of time.

![Diagram of memory hierarchy]

Note - "b" affects:
1. block size
2. cache capacity (b^2)
3. transfer time

For asymptotic analysis, we want b to grow with n

- $b = \frac{1}{3}$ or $\frac{1}{4}$ are plausible choices.

<table>
<thead>
<tr>
<th></th>
<th>“block” (Bytes)</th>
<th>“cache” (Bytes)</th>
<th>time (cycles)</th>
<th>“memory” (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRAM/DRAM</td>
<td>$2^6 - 2^8$</td>
<td>$2^{13} - 2^{20}$</td>
<td>$2^{5} - 2^{7}$</td>
<td>$2^{27} - 2^{30}$</td>
</tr>
<tr>
<td>$b = n^{1/4}$</td>
<td>2^7</td>
<td>2^{14}</td>
<td>2^{7}</td>
<td>2^{28}</td>
</tr>
<tr>
<td>DRAM/disk</td>
<td>$2^{12} - 2^{13}$</td>
<td>$2^{26} - 2^{30}$</td>
<td>$2^{15} - 2^{20}$</td>
<td>$2^{32} - 2^{36}$</td>
</tr>
<tr>
<td>$b = n^{1/3}$</td>
<td>2^{13}</td>
<td>2^{26}</td>
<td>2^{13}</td>
<td>2^{39}</td>
</tr>
</tbody>
</table>
A worst-case Heapsort instance

Each Extract-Max goes all the way to a leaf.

Visits to each node alternate between left and right child.

Actually, for any sequence of paths from root to leaves, one can create example.

Construct starting with 1-node heap

MH₂ analysis of Heapsort

• Assume $b = n^{1/3}$.
 - Similar analysis works for $b = n^a$, $0 < a < \frac{1}{3}$.

• Effect of LRU replacement:
 - First $n^{2/3}$ heap elements will “usually” be in cache.
 • Let $h = \lceil \log n \rceil$ be height of the tree.
 • These elements are all in top $\lceil (2/3)h \rceil$ of tree.
 - Remaining elements won’t usually be in cache.
 • In worst case example, they will never be in cache when you need them.
 • (Caution: hand waving) In general, an earlier block of array is more likely to be accessed than a later one. When we kick out an early block to bring in a later one, we increase misses later.
Cache lines of heap (b=8, n=511, h=9)

MH$_2$ analysis of Heapsort (worst-case)

- Every access below level ⌈(2/3)h⌉ is a miss.
- Each of the first n/2 Extract-max's "bubbles down" to the leaves.
 - So it has at least (h/3)-1 misses.
 - Each miss takes time b.
- Thus, T(n) > (n/2) ((h/3)-1) b.
 - Recall: b = n$^{1/3}$ and h = ⌊lg n⌋.
- Thus, T(n) is Ω(n$^{4/3}$ lg n).
- And obviously, T(n) is O(n$^{4/3}$ lg n).
 - Each of c n lg n accesses takes time at most b = n$^{1/3}$.
 (where c is constant from RAM analysis of Heapsort).
Quicksort MH$_2$ complexity

- Accesses in Quicksort are sequential
 - Sometimes increasing, sometimes decreasing

- When you bring in a block of b elements, you access every element.
 - Not 100%, but I'll wave my hands

- We take b time getting block for b accesses

Thus, time in MH$_2$ model is same as RAM.