Your turn ...

For one of the following recursion trees ...

1. \(T(n) = 3T(n/4) + 5n \) for \(n = 256 \)
2. \(T(n) = 2T(n/2) + 5n \) for \(n = 32 \)
3. \(T(n) = 3T(n/2) + 5n \) for \(n = 32 \)
4. \(T(n) = 3T(n/2) + n^2 \) for \(n = 32 \)
5. \(T(n) = 4T(n/2) + n^2 \) for \(n = 32 \)

...figure out the total “combine time” (the last term) needed at each level.

Answer should be a sequence of 5 or 6 numbers.
Recursion Tree for $T(n) = aT(n/b) + cn$

How does your tree grow?

What's $T(n) = cn \left(1 + a(n/b) + a^2(n/b^2) + \ldots + a^\log_b n(n/b^\log_b n) \right)$?

The largest term of a geometric series “dominates”.

- If $a/b < 1$, the first term dominates

 Thus, $T(n) \in \Theta(n)$.

- If $a/b > 1$, the last term dominates

 So $T(n) \in \Theta(n(a/b)^{\log_b n}) = \Theta(n(a^{\log_b n}/b^{\log_b n})) = \Theta(n(a^{\log_b n}/n)) = \Theta(a^{\log_b n}) = \Theta(n^{\log_b a})$.

- If $a/b = 1$, all terms are equal. There are $\log_b n$ terms.

 So $T(n) \in \Theta(n \log_b n) = \Theta(n \log n)$.
Where are we ??

In Divide & Conquer ... if $T(n) = aT(n/b) + cn$, (i.e. if you can combine pieces with linear work)
then there are three cases:

if $a>b$, then $T(n)$ is $\Theta(n^\log_b a)$ (there are so many tiny subproblems, they dominate the time)
if $a=b$, then $T(n)$ is $\Theta(n \log n)$ (just like merge sort)
if $a<b$, then $T(n)$ is $\Theta(n)$ (big step is most expensive)

What if combining takes $f(n)$ work??

In Divide & Conquer ... if $T(n) = aT(n/b) + f(n)$, then three corresponding cases are:

1. The tiny subproblems dominate the run time
 - Happens when $f(n) < c \ a \ f(n/b)$ for some $c<1$ and all n
 - If so, $T(n) \in \Theta(a^\log_b n) = \Theta(n^\log_b a)$.

2. All levels take about the same time
 - Happens when $f(n)$ is $\Theta(a^\log_b n)$.
 - If so, $T(n) = \Theta(f(n) \log n)$.

3. Big step is most expensive
 - Happens when $f(n) > c \ a \ f(n/b)$ for some $c>1$ and all n.
 - If so, $T(n) = \Theta(f(n))$.
Previous slide is “Master Method”

Slight differences:

Book’s condition on case 1, “f(n) is $O(n^{\log_{b}a-\epsilon})$”, is slightly more general.
It allows $f(n)$ to be less uniform.

Case 2 - remember $a^{\log_{b}n} = n^{\log_{b}a}$.

Book has (unnecessary) extra condition in case 3
“$f(n)$ is $\Omega(n^{\log_{b}a+\epsilon})$” is implied by “$f(n) > c a f(n/b), c>1$”

Master method can “interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$”

Other recurrences

Master Method doesn’t always apply:

What if, in MergeSort, we divided 75% - 25%?

$T(n) = T(3n/4) + T(n/4) + c n.$

Or we divided into 1000 and n-1000 sized pieces?

$T(n) = T(1000) + T(n-1000) + cn$ (for n>1000).

Or consider:

$T(n) = 2T(n/2) + n \log n.$