Heuristic search

A heuristic is a "rule of thumb"
using domain knowledge

Heuristics may be incorporated

- in next-state rules
- in control

In the latter case:

Used to guide search

Examples:

eight puzzle

Distance of pieces from goal position
science: what to study

likeliness of publication

number of people interested

how much will this answer a fundamental question

c chess

control of center

material advantage

lead to attack on king
Heuristics

Can divide search algorithms based on informedness

Uninformed: Make no use of domain knowledge
(also known as *blind search*

Breadth-first search, Depth first search

Iterative Deepening (ID)

Informed: Make use of heuristics

Hill climbing (gradient descent)

Best-first search: A and A*

IDA*: heuristic version of ID
Hill climbing

1. Guess a possible solution.

2. If it is one, quit.

3. Use all applicable operators to generate
 a set of candidate possible solutions

4. Now, evaluate all solutions (usually via a heuristic)
 for "closeness to the goal"

5. Take the closest. Go to step 2.

Problems:

 local maxima, plateaus, ridges

First Aid:

 backtracking, long jumps, blind movement, probabilistic movement
General Tree search algorithm
(OBVIOUSLY NOT IN PURE LISP!!)

(ignores bookkeeping for graphs and keeping track of the path):

/* Initialize */

1. OPEN = {Start_node}; CLOSED = NIL;

While TRUE do

2. If empty(OPen) then return(*FAIL*);

/* Expand next node */

3. CURRENT = car(OPen);

4. CLOSED = cons(CURRENT, CLOSED);

5. If Goal(CURRENT) Then Return(PATH)

/* apply operators to get a list of successors */

6. SUCCESSORS = Expand(CURRENT);

/* Heuristics go here, in how things are inserted */

7. OPEN = Insert(SUCCESSORS, OPEN);

od
Best first search:

Using an evaluation function

Best first search is a heuristic search:
Use an *evaluation function* to determine *priority* in OPEN

How it works:

Put nodes in OPEN in order of evaluation of "goodness"

\[\text{car}(\text{OPEN}) == \text{node with lowest } f \text{ value} \]

Thus, we will be opening the "best" node first.

Of course, this is really the "seemingly-best" node!
Best first search Example 1: Greedy Search

Greedy search uses a *heuristic function* $h(n)$ that estimates the distance to the goal from node n.

In the "find a route" problem, this could be the straight-line distance to the goal.

In the 8-puzzle, this could be an estimate of the number of moves required to get to the goal.

Greedy search:

- Is *very* goal-directed

- Is *not* optimal (won’t find the shortest path in all cases).

- Often minimizes *search cost* though
Best first search Example 2:
Algorithm A

Note: Uniform cost search is not goal-directed

It expands from the start node as "evenly" as possible, like ripples on a pond.

But it is optimal.

Would be nice to combine UCS and Greedy search:

\[f(n) = \text{cost of getting to } n \]
\[+ \text{ estimated cost of getting to the goal from here} \]
\[= g(n) + h(n) \]

Thus, \(f(n) \) is:

an estimate of the cost of a path through node \(n \).

This is called "Algorithm A".
Search: Evaluation functions

\(g(n) \) and \(f(n) \) are often estimates - true values are \(g^*(n) \) and \(f^*(n) \).

We estimate \(g^*(n) \) with \(g(n) = \) actual cost of getting to here

I.e., sum of costs of arcs in path to root

For *uninformed search methods* \(h(n) = 0 \)

If all arcs have cost -1:

Depth first search

But usually, we assume arcs costs are \(\geq 0 \)

If all arcs have cost 1:

Breadth first search

Otherwise, Uniform cost search

(finds shortest path to a goal)
Search: Evaluation functions

I nformed algorithms make use of h:

heuristic function

A good heuristic function:

- is cheap to evaluate

- constrains the search tree
to be long and stringy

- finds nearly optimal solutions

NOTE TRADEOFF:

between cost of evaluating h and constraining search

between optimality and constraining search
An *admissible* algorithm is one that is:

guaranteed to find optimal path

It turns out that if \(h(n) \) is a lower bound on \(h^* \):

\[
h(n) \leq h^*(n)
\]

Then algorithm A is admissible.

This is called algorithm A*.

However, for combinatorial problems:

Inadmissible algorithms may be the only way to get a solution!

\(h(n) \) may exceed \(h^*(n) \)
Informedness:

Given two A* algorithms

\[A_1 \text{ using } h_1 \]
\[A_2 \text{ using } h_2 \]

if \(h_1 > h_2 \) for all nodes:

Then algorithm \(A_1 \) is more informed than \(A_2 \)

We can prove that \(A_2 \) will always open every node opened by \(A_1 \) (i.e., \(A_1 \) will always open fewer nodes).
Search: Evaluation functions

Recap:

Uniform cost search: Distance from source is known. (generalization of BFS)

Uniform cost search + estimate of distance to goal (h) = heuristic search = Algorithm A

Uniform cost search + special estimate of distance to goal = Algorithm A*

Admissibility: An algorithm is admissible if it always terminates in an optimal path (this is the same notion as optimality that we used before).

Special estimate: One that never exceeds true distance => we will always find an optimal path, i.e. A* is admissible.

An algorithm A_1 is more informed than A_2 if $h_1 > h_2$

We can prove that A_2 will always open every node opened by A_1 (i.e., A_1 will always open fewer nodes).
Search: Evaluation functions

Sketch of Optimality of A*:

1. Termination of A*

2. Show that there is always a node on the optimal path to the goal in OPEN, call it n^*

3. Show A* must terminate in the optimal path
 proof by contradiction

 Assume we found a non-optimal path terminating in n

 then $f(n) > f(n^*)$ so how did it get off OPEN first?
A heuristic algorithm that saves space: IDA*

IDA* is Iterative Deepening using an \textit{f-cost} limit instead of a depth limit.

First, need to change Depth-bounded depth first search to use \textit{f}-costs instead.

When it reaches something over the depth limit, it needs to update the next \textit{f}-limit, "next-f" (which needs to be a global!)

The following ignores bookkeeping for solution path (assumes it is stored with node):

In C-ish lisp:

\textbf{DFS-contour(node, f-limit)}

\begin{verbatim}
(cond ((f-cost(node) > f-limit)
 next-f = min(next-f, f-cost(node));
 return(nil);
 (goal(node) return(node));
 (t
 successors = expand(node);
 foreach node in successors,
 DFS-contour(node,f-limit))))
\end{verbatim}
A heuristic algorithm that saves space: IDA*

Now, IDA* is:

\[
\text{DFS-contour(start, f-cost(start))};
\]

(also ignores absolute failure...)

This will cost more time than A*,

but will use less space....

Problem:

If f-costs go up in very small increments, this could take an inordinate amount of time.

E.g., in Traveling Salesperson Problems...

So, use an "epsilon" increment - guarantees solution within epsilon of optimal.